Publicaciones
Se encontró/encontraron 21 Publicaciones(s).
Báez, S.; Cayuela, L.; Macia, M.; Alvarez-Dávila, E.; Apaza-Quevedo, A.; Arnelas, I.; Baca-Cortes, N.; Banares de Dios, G.; Bauters, M.; Ben Saadi, S.; Blundo, C.; Cabrera, M.; Castano, F.; Cayola, L.; de Aledo, J.; Espinosa, C.I.; Fadrique, B.; Farfan-Rios, W.; Fuentes, A.; Garnica-Diaz, C.; Gonzalez, M.; Gonzalez, D.; Hensen, I.; Hurtado, A.B.; Jadan, O.; Lippok, D.; Loza, M.; Maldonado, C.; Malizia, L.; Matas-Granados, L.; Myers, J.; Norden, N.; Oliveras Menor, I.; Pierick, K.; Ramirez-Angulo, H.; Salgado-Negret, B.; Schleuning, M.; Silman, M.; Solarte-Cruz, M.; Tello, J.; Verbeeck, H.; Vilanova, E.; Weithmann, G. & Homeier, J. (2022): FunAndes – A functional trait database of Andean plants. Scientific Data 9, 511.
-
download
-
link
-
view metadata
-
DOI: 10.1038/s41597-022-01626-6
-
Resumen:
Resumen:
We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY’s next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot.
-
Keywords: |
Andes |
plant functional traits |
Wurz, A.; Bendix, J.; Homeier, J.; Matt, F.; Paladines, P.; Serrano, F. & Farwig, N. (2023): A hidden gem in the Tumbesian dry forest in southern Ecuador: Estacon Cientfica Laipuna. ECOTROPICA 25(1/2), -.
Weigand, A.; Homeier, J.; Lehnert, M. & Kessler, M. (2022): Influence of increasing nutrient availability on fern and lycophyte diversity. American Fern Journal 112(1), 17-35.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1640/0002-8444-112.1.17
-
Resumen:
Resumen:
Increased nutrient supply can have drastic effects on natural ecosystems, especially in
naturally nutrient-poor ones such as most tropical rainforests. Many studies have focused on the reaction of trees to fertilization, but little is known about herbaceous plants. Ferns are a particularly common group in tropical forests, spanning all vegetation types and zones. Here, we assess how seven years of moderate addition of nitrogen (N), phosphorus (P), and N+P along an elevational gradient (1000–3000 m) have impacted richness and composition of fern and lycophyte assemblages in tropical montane rain forests growing on naturally nutrient deficient soils in the Ecuadorian Andes. We found that fertilization does not affect overall species richness, but that there were strong differences in species abundances (~60% of species), both negative and positive, that were apparently related to the systematic affiliations and ecological properties of the affected species. These diverse responses of ferns to fertilization provide insight into the sensitivity and complexity of the relationships of nutrient availability and community composition in tropical forests.
-
Keywords: |
NUMEX |
diversity |
Andes |
tropical montane forest |
elevational gradient |
experimental nutrient addition |
fern |
Muñoz, P.; Orellana-Alvear, J.; Bendix, J.; Feyen, J. & Celleri, R. (2021): Flood Early Warning Systems Using Machine Learning Techniques: The Case of the Tomebamba Catchment at the Southern Andes of Ecuador. Hydrology 8(4), -.
Schüßler, A.; Krüger, C. & Urgiles , N. (2016): Phylogenetically diverse AM fungi from Ecuador strongly improve seedling growth of native potential crop trees. Mycorrhiza 26(3), 199--207.
Haug, I.; Setaro, S. & Suarez, J.P. (2019): Species composition of arbuscular mycorrhizal communities changes with elevation in the Andes of South Ecuador. PLOS ONE 14(8), 1-19.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1371/journal.pone.0221091
-
Resumen:
Resumen:
Arbuscular mycorrhizal fungi (AMF) are the most prominent mycobionts of plants in the tropics, yet little is known about their diversity, species compositions and factors driving AMF distribution patterns. To investigate whether elevation and associated vegetation type affect species composition, we sampled 646 mycorrhizal samples in locations between 1000 and 4000 m above sea level (masl) in the South of Ecuador. We estimated diversity, distribution and species compositions of AMF by cloning and Sanger sequencing the 18S rDNA (the section between AML1 and AML2) and subsequent derivation of fungal OTUs based on 99% sequence similarity. In addition, we analyzed the phylogenetic structure of the sites by computing the mean pairwise distance (MPD) and the mean nearest taxon difference (MNTD) for each elevation level. It revealed that AMF species compositions at 1000 and 2000 masl differ from 3000 and 4000 masl. Lower elevations (1000 and 2000 masl) were dominated by members of Glomeraceae, whereas Acaulosporaceae were more abundant in higher elevations (3000 and 4000 masl). Ordination of OTUs with respect to study sites revealed a correlation to elevation with a continuous turnover of species from lower to higher elevations. Most of the abundant OTUs are not endemic to South Ecuador. We also found a high proportion of rare OTUs at all elevations: 79–85% of OTUs occurred in less than 5% of the samples. Phylogenetic community analysis indicated clustering and evenness for most elevation levels indicating that both, stochastic processes and habitat filtering are driving factors of AMF community compositions.
-
Keywords: |
species |
arbuscular mycorrhiza |
Andes |
Arbuscular mycorrhizal fungi |
Campozano, L.; Trachte, K.; Celleri, R.; Samaniego, E.; Bendix, J.; Cristóbal, A. & Mejia, J.F. (2018): Climatology and Teleconnections of Mesoscale Convective Systems in an Andean Basin in Southern Ecuador: The Case of the Paute Basin. Advances in Meteorology 2018, 1-13.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1155/2018/4259191
-
Resumen:
Resumen:
Mesoscale convective systems (MCSs) climatology, the thermodynamic and dynamical variables, and teleconnections influencing MCSs development are assessed for the Paute basin (PB) in the Ecuadorian Andes from 2000 to 2009. The seasonality of MCSs occurrence shows a bimodal pattern, with higher occurrence during March-April (MA) and October-November (ON), analogous to the regional rainfall seasonality. The diurnal cycle of MCSs shows a clear nocturnal occurrence, especially during the MA and ON periods. Interestingly, despite the higher occurrence of MCSs during the rainy seasons, the monthly size relative frequency remains fairly constant throughout the year. On the east of the PB, the persistent high convective available potential and low convective inhibition values from midday to nighttime are likely related to the nocturnal development of the MCSs. A significant positive correlation between the MCSs occurrence to the west of the PB and the Trans-Niño index was found, suggesting that ENSO is an important source of interannual variability of MCSs frequency with increasing development of MCSs during warm ENSO phases. On the east of the PB, the variability of MCSs is positively correlated to the tropical Atlantic sea surface temperature anomalies south of the equator, due to the variability of the Atlantic subtropical anticyclone, showing main departures from this relation when anomalous conditions occur in the tropical Pacific due to ENSO.
-
Keywords: |
Andes |
Meteorology |
Trachte, K. (2018): Atmospheric Moisture Pathways to the Highlands of the Tropical Andes: Analyzing the Effects of Spectral Nudging on Different Driving Fields for Regional Climate Modeling. Atmosphere 9(11), 1-24.
Correa, A.; Windhorst, D.; Crespo, P.; Celleri, R.; Feyen, J. & Breuer, L. (2016): Continuous versus event based sampling: How many samples are required for deriving general hydrological understanding on Ecuador's páramo region?. Hydrological Processes 30(22), 4059-4073.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1002/hyp.10975
-
Resumen:
Resumen:
As a consequence of the remote location of the Andean páramo is knowledge on their hydrologic functioning limited, notwithstanding this alpine tundra ecosystem act as water towers for a large fraction of the society. Given the harsh environmental conditions in this region is year-round monitoring cumbersome, and it would be beneficially if the monitoring needed for the understanding of the rainfall-runoff response could be limited in time. To identify the hydrological response and the effect of temporal monitoring a nested (n?=?7) hydrological monitoring network was set up in the Zhurucay catchment (7.53?km2), south Ecuador. The research questions were: (1) can event sampling provide similar information in comparison to continuous monitoring, and (2) if so, how many events are needed to achieve a similar degree of information? A subset of 34 rainfall runoff events was compared to monthly values derived from a continuous monitoring scheme from December 2010 to November 2013. Land cover and physiographic characteristics were correlated with eleven hydrological indices. Results show that despite some distinct differences between event and continuous sampling, both datasets reveal similar information; more in particular the monitoring of a single event in the rainy season provides the same information as continuous monitoring, while during the dry season 10 events ought to be monitored.
-
Keywords: |
Paramo |
Andes |
hydrologic response |
catchment hydrology |
sampling design |
Mosquera, G.; Celleri, R.; Lazo, P.; Vaché, K.; Perakis, S. & Crespo, P. (2016): Combined use of isotopic and hydrometric data to conceptualize ecohydrological processes in a high-elevation tropical ecosystem. Hydrological Processes xxx, xxx.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1002/hyp.10927
-
Resumen:
Resumen:
Few high-elevation tropical catchments worldwide are gauged, and even fewer are studied using combined hydrometric and isotopic data. Consequently, we lack information needed to understand processes governing rainfall–runoff dynamics and to predict their influence on downstream ecosystem functioning. To address this need, we present a combination of hydrometric and water stable isotopic observations in the wet Andean páramo ecosystem of the Zhurucay Ecohydrological Observatory (7.53?km2). The catchment is located in the Andes of south Ecuador between 3400 and 3900?m?a.s.l. Water samples for stable isotopic analysis were collected during 2?years (May 2011–May 2013), while rainfall and runoff measurements were continuously recorded since late 2010. The isotopic data reveal that andosol soils predominantly situated on hillslopes drain laterally to histosols (Andean páramo wetlands) mainly located at the valley bottom. Histosols, in turn, feed water to creeks and small rivers throughout the year, establishing hydrologic connectivity between wetlands and the drainage network. Runoff is primarily composed of pre-event water stored in the histosols, which is replenished by rainfall that infiltrates through the andosols. Contributions from the mineral horizon and the top of the fractured bedrock are small and only seem to influence discharge in small catchments during low flow generation (non-exceedance flows?<?Q35). Variations in source contributions are controlled by antecedent soil moisture, rainfall intensity, and duration of rainy periods. Saturated hydraulic conductivity of the soils, higher than the year-round low precipitation intensity, indicates that Hortonian overland flow rarely occurs during high-intensity precipitation events. Deep groundwater contributions to discharge seem to be minimal. These results suggest that, in this high-elevation tropical ecosystem, (1) subsurface flow is a dominant hydrological process and (2) (histosols) wetlands are the major source of stream runoff. Our study highlights that detailed isotopic characterization during short time periods provides valuable information about ecohydrological processes in regions where very few basins are gauged.
-
Keywords: |
Andes |
hydrological processes |
isotopes |
ecohydrological processes; |
Carrillo Rojas, G.; Silva, B.; Cordova, M.; Celleri, R. & Bendix, J. (2016): Dynamic Mapping of Evapotranspiration Using an Energy Balance-Based Model over an Andean Páramo Catchment of Southern Ecuador. Remote Sensing 8(2), 160 (1-24).
-
log in to download
-
log in to download
-
log in to download
-
link
-
view metadata
-
DOI: 10.3390/rs8020160
-
Resumen:
Resumen:
Understanding of evapotranspiration (ET) processes over Andean mountain environments is crucial, particularly due to the importance of these regions to deliver water-related ecosystem services. In this context, the detection of spatio-temporal changes in ET remains poorly investigated for specific Andean ecosystems, like the páramo. To overcome this lack of knowledge, we implemented the energy-balance model METRIC with Landsat 7 ETM+ and MODIS-Terra imagery for a páramo catchment. The implementation contemplated adjustments for complex terrain in order to obtain daily, monthly and annual ET maps (between 2013 and 2014). In addition, we compared our results to the global ET product MOD16. Finally, a rigorous validation of the outputs was conducted with residual ET from the water balance. ET retrievals from METRIC (Landsat-based) showed good agreement with the validation-related ET at monthly and annual steps (mean bias error <8 mm·month?1 and annual deviation <17%). However, METRIC (MODIS-based) outputs and the MOD16 product were revealed to be unsuitable for our study due to the low spatial resolution. At last, the plausibility of METRIC to obtain spatial ET retrievals using higher resolution satellite data is demonstrated, which constitutes the first contribution to the understanding of spatially-explicit ET over an alpine catchment in the neo-tropical Andes.
-
Keywords: |
Ecuador |
Páramo |
remote sensing |
Andes |
Landsat |
Evapotranspiration |
Tropical Mountains |
METRIC |
MODIS |
Curatola Fernández, G.F.; Obermeier, W.A.; Gerique, A.; López Sandoval, M.F.; Lehnert, L.W.; Thies, B. & Bendix, J. (2015): Land Cover Change in the Andes of Southern Ecuador - Patterns and Drivers. Remote Sensing 7(3), 2509-2542.
-
log in to download
-
link
-
view metadata
-
DOI: 10.3390/rs70302509
-
Resumen:
Resumen:
In the megadiverse tropical mountain forest in the Andes of southern Ecuador, a global biodiversity hotspot, the use of fire to clear land for cattle ranching is leading to the invasion of an aggressive weed, the bracken fern, which is threatening diversity and the provisioning of ecosystem services. To find sustainable land use options adapted to the local situation, a profound knowledge of the long-term spatiotemporal patterns of land cover change and its drivers is necessary, but hitherto lacking. The complex topography and the high cloud frequency make the use of remote sensing in this area a challenge. To deal with these conditions, we pursued specific pre-processing steps before classifying five Landsat scenes from 1975 to 2001. Then, we quantified land cover changes and habitat fragmentation, and we investigated landscape changes in relation to key spatial elements (altitude, slope, and distance from roads). Good classification results were obtained with overall accuracies ranging from 94.5% to 98.5% and Kappa statistics between 0.75 and 0.98. Forest was strongly fragmented due to the rapid expansion of the arable frontier and the even more rapid invasion by bracken. Unexpectedly, more bracken-infested areas were converted to pastures than vice versa, a practice that could alleviate pressure on forests if promoted. Road proximity was the most important spatial element determining forest loss, while for bracken the altitudinal range conditioned the degree of invasion in deforested areas. The annual deforestation rate changed notably between periods: ~1.5% from 1975 to 1987, ~0.8% from 1987 to 2000, and finally a very high rate of ~7.5% between 2000 and 2001. We explained these inconstant rates through some specific interrelated local and national political and socioeconomic drivers, namely land use policies, credit and tenure incentives, demography, and in particular, a severe national economic and bank crisis.
-
Keywords: |
Ecuador |
remote sensing |
Andes |
fragmentation |
land cover change |
bracken fern |
deforestation drivers |
Landsat |
image pre-processing |
attractors of landscape change |
Iniguez, C.; Leiva Calderón, A.; Breuer, L.; Frede, H. & Hampel, H. (2014): Deforestation and benthic indicators: How much vegetation cover is needed to sustain healthy Andean streams? . PLoS ONE 9(8), e105869.
Peters, T.; Bräuning, A.; Münchow, J. & Richter, M. (2014): An ecological paradox: high species diversity and low position of the upper forest line in the Andean Depression. Ecology and Evolution ece.3.1078, 1-12.
-
log in to download
-
link
-
view metadata
-
DOI: DOI:10.1002/ece3.1078
-
Resumen:
Resumen:
Systematic investigations of the upper forest line (UFL) primarily concentrate on mid and high latitudes of the Northern Hemisphere, whereas studies of Neotropical UFLs are still fragmentary. This article outlines the extraordinary high tree diversity at the UFL within the Andean Depression and unravels the links between the comparatively low position of the local UFL, high tree-species diversity, and climate. On the basis of Gentry?s rapid inventory methodology for the tropics, vegetation sampling was conducted at 12 UFL sites, and local climate (temperature, wind, precipitation, and soil moisture) was investigated at six sites. Monotypic forests dominated by Polylepis were only found at the higher located margins of the Andean Depression while the lower situated core areas were characterized by a species-rich forest, which lacked the elsewhere dominant tree-species Polylepis. In total, a remarkably high tree-species number of 255 tree species of 40 different plant families was found. Beta-diversity was also high with more than two complete species turnovers. A non-linear relationship between the floristic similarity of the investigated study sites and elevation was detected. Temperatures at the investigated study sites clearly exceeded 5.5°C, the postulated threshold value for the upper tree growth limit in the tropics. Instead, quasi-permanent trade winds, high precipitation amounts, and high soil water contents affect the local position of the UFL in a negative way. Interestingly, most of the above-mentioned factors are also contributing to the high species richness. The result is a combination of a clearly marked upper forest line depression combined with an extraordinary forest line complexity, which was an almost unknown paradox.
-
Keywords: |
climate |
air temperature |
Andes |
Biodiversity |
upper forest line |
andean depression |
Brehm, G.; Strutzenberger, P. & Fiedler, K. (2013): Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography 36(11), 1247-1253.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/j.1600-0587.2013.00030.x
-
Resumen:
Resumen:
Species diversity of geometrid moths (Lepidoptera, Geometridae) has previously been shown to be extremely and constantly high along a continuously forested elevational gradient in the Andes of southern Ecuador. We analysed samples taken from 32 sites between 1999 and 2011 in northern Podocarpus National Park and adjacent areas from 1020 to 2916 m a.s.l. We conjecture that high elevation habitats were historically mostly colonised by species from lower elevations, and that environmental filtering (e.g. through host plant specificity or temperature tolerance) constrained colonisation from lower elevations, which would yield a pattern of elevationally decreasing phylogenetic diversity. We analysed elevational phylogenetic patterns by means of: 1) the nearest-taxon index (NTI), 2) DNA barcode-based terminal branch lengths (TBLs) from maximum-likelihood phylogeny, 3) the subfamily composition of the local assemblages, and 4), the rarefied number of morphologically defined genera per site.
We counted a total of 1445 species. NTI values significantly increased with elevation, both in a conventional and a rarefaction approach. TBLs decreased significantly with elevation. Subfamily composition profoundly changed with elevation, particularly expressed as an increased proportion of the subfamily Larentiinae and decreased fractions of Sterrhinae and Geometrinae. The number of genera in equally rarefied species resamples significantly decreased with elevation. We conclude that environmental filtering indeed contributed to an altitudinal decrease in moth phylodiversity, but these constraints prevented only relatively few clades from colonising high elevation habitats.
-
Keywords: |
moths |
Andes |
Jantz, N. (2010): A Holocene environmental record reflecting vegetation, climate, and fire variability at the Páramo of Quimsacocha in the south Ecuadorian Andes Georg-August-Universität Göttingen, master thesis
-
log in to download
-
link
-
view metadata
-
Resumen:
Resumen:
We reconstructed the palaeoenvironmental conditions of the last ca. 8000 years in the Tres Lagunas region of the Quimsacocha volcanic basin (ca. 3800 m a.s.l.) in the southwestern Ecuadorian Andes by means of a pollen and charcoal record.
Sediment deposits and pollen taxa reflect warm and possibly drier conditions in the early to mid-Holocene. The late Holocene undergoes several warm and cold-phases of which the most prominent one was the Little Ice-Age which is characterised by a marked increase of taxa that correspond to cold and moist conditions. As charcoal can be recorded since the early to mid-Holocene and Polylepis underwent several phases of degradation and re-establishment in the region, the presence of human influence might be dated back to this time.
-
Keywords: |
Holocene |
Paramo |
Palaeoecology |
climate change |
Andes |
Rodriguez, F. & Behling, H. (2012): Late Quaternary vegetation, climate and fire dynamics, and evidence of early to mid-Holocene Polylepis forests in the Jimbura region of the southernmost Ecuadorian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 350-352, 247-257.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.palaeo.2012.07.004
-
Resumen:
Resumen:
The vegetation,climate and fire history of high mountain ecosystemsin the southern Ecuadorian Andes are
documented in a continuous pollen and charcoal record,from Lagunas Natosas Forest bog,at 3495 m a.s.l. spanning the late Pleistocene and Holocene periods since 15,930 cal yr BP.The chronology of this record is
based on four radiocarbon dates.Páramo vegetation with abundant Poaceae and Plantago rigida characterized
the Late Glacial(LG)period, implying cold and wet conditions. Slight expansions of mountain forests suggest
warming during the LG. The upper foresl line was lower than today and fire events were rare during the
Pleistocene. During the early and mid-Holocene until 4300 cal yr BP, the area of páramo was markedly smaller and the subpáramo with woody vegetation (Melastomataceae) was larger. The upper mountain forest dominated and the upper forest line shifted to higher elevations. The pollen record provides the first evidence
of the development of Polylepis forests in the southern part of the so-called Andean Depression reflecting
warmer and drier climatic conditions during early and mid-Holocene. The late Holocene after about
4300 cal yr BP is characterized by larger areas of páramo and subpáramo promoted by moister conditions.
These moister conditions and frequent fires may have been the cause of the very rare occurrence or even extinction of Polylepis populations in the Jimbura region. Since ca. 1000 cal yr BP human occupation has altered
the landscape by frequent burning, woodcutting, grazing and cultivation.
-
Keywords: |
Ecuador |
palynology |
Holocene |
Andes |
mountain forest |
Polylepis |
fire history |
forest line |
Late Glacial |
Zamora |
Brehm, G.; Bodner, F.; Strutzenberger, P.; Hünefeld, F. & Fiedler, K. (2011): Neotropical Eois (Lepidoptera: Geometridae): Checklist, Biogeography, Diversity, and Description Patterns. Annals of the Entomological Society of America 104, 1091-1107.
-
log in to download
-
link
-
view metadata
-
Resumen:
Resumen:
The moth genus Eois Hu¨ bner (Lepidoptera: Geometridae: Larentiinae) comprises 254 validly described species, 211 of them (83%) occurring in the Neotropical region, 12% in the Asian-Australian region, and 5% in Africa. A checklist of Neotropical Eois is provided and some taxonomic changes are made. Aplogompha noctilaria (Schaus) is excluded from the genus, and Eois bermellada (Dognin) and Eois fragilis (Warren) are transferred to the genus. Further changes include Eois cellulata (Prout) stat. rev., Eois ambarilla (Dognin) stat. rev., and Eois telegraphica Prout stat. rev. By far, the majority of Eois species (82%) were described between 1891 and 1920; approximately half of all species by just two authors. Within the Neotropical region, the majority of species (55%) were described from the tropical Andes (Colombia, Ecuador, Peru, and Bolivia), followed by Central America and the Caribbean (28%), and the rest of South America (17%). Large regions such as the Amazon basin, eastern South America, but also northern Peru are heavily underrepresented. Regional diversity studies provide evidence that the wet tropical Andes are the diversity hotspot of Eois. From a forested elevational gradient (1,020Ð2,670 m above sea level) in southeastern Ecuador, 154 morphospecies are currently known, with only 12% of them described. Regional species richness in Central America is lower (Costa Rica, 66 observed morphospecies along a gradient from 40 to 2,730 m; 29% described). Total richness of the genus is estimated to be 1,000 species in the Neotropical region. If the low proportions of described species only partly recur in other groups of Neotropical geometrid moths, their number may exceed 19,000 species. A taxonomic revision of Eois will be a prerequisite for comparison of ecological data from different regions.
-
Keywords: |
diversity |
Andes |
Larentiinae |
species richness estimate |
Jantz, N. & Behling, H. (2011): A Holocene environmental record reflecting vegetation, climate, and fire variability at the Páramo of Quimsacocha, southwestern Ecuadorian Andes. Vegetation History and Archaeobotany 21, 169-185.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s00334-011-0327-x
-
Resumen:
Resumen:
We reconstructed the palaeoenvironmental conditions of the last ca. 8000 years in the Tres Lagunas region of the Quimsacocha volcanic basin (ca. 3800 m a.s.l.) in the southwestern Ecuadorian Andes. By means of a pollen and charcoal record, we analysed vegetation, fire, and climate history of this area, which is sensitive to climatic changes of both the Pacific as well as of the eastern Andes and Amazon region. Sediment deposits, pronounced increase of pollen and charcoal concentrations, and pollen taxa reflect warmer and drier conditions in the early to mid-Holocene (~8000 to 3900 cal B.P.). During the late Holocene (2250 to -57 cal B.P.), 5 warm and cold-phases occurred at Quimsacocha. The most prominent cold phase possibly corresponds to the globally recognized Little Ice-Age (LIA; ~600 to 100 cal B.P.). The cold phase signal at Quimsacocha was characterized by a higher abundance of Poaceae, Isoëtes and Gentianella, which favour cold and moist conditions. Frequent charcoal particles can be recorded since the early to mid-Holocene (~7600 B.P.). The high Andean tree species Polylepis underwent several phases of degradation and re-establishment in the basin, which can indicate the use of fire by pre-Columbian settlers to enhance the growth of preferred herb species. The Tres Lagunas record suggests that human populations have been influencing the environment around Quimsacocha since the last ca. 8,000 years.
-
Keywords: |
Ecuador |
Holocene |
Paramo |
Palaeoecology |
climate change |
Andes |
Rollenbeck, R. & Bendix, J. (2011): Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. . Atmos. Res. 99, 277?289.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.atmosres.2010.10.018
-
Resumen:
Resumen:
The Andes of Ecuador show an extreme heterogeneity of spatial and temporal distribution of precipitation. The existing operational network of the national weather service is not capable of reproducing these complex patterns. By using a cost-efficient rain radar and a network of high-resolution rain gauges, the real complexity of the rainfall distribution and the meteorological processes of rainfall formation can be assessed. A blendingmethod encompassing geostatistical
tools allows to derive a comprehensive rainfall climatology for the study area. Precipitation is predominantly of the advective type, associated with humid air masses from the Amazon basin transported by the tropical easterlies. The typical form is light to heavy drizzle with long duration but lower rain rates. However, in contrast to former knowledge there is no single mechanism of rain formation for any given place. Several processes interact like small and large-scale convective cloud systems, local and regional valley/mountain breeze systems and terrain-lines of preferred moisture transport interact on various time scale. This leads to complex patterns of rainfall in space and
time. Several types of characteristic weather situations are revealed by the study. They are characterized by specific combinations of local and regional atmospheric processes and interactions with the topographical configuration. They are modified by mesoscale and continental circulation patterns as the annual shift of pressure cells, the east Andean low-level Jet and katabatic flows.
-
Keywords: |
precipitation |
Andes |
radar |
calibration |
climatology |
Brunschön, C.; Haberzettl, T. & Behling, H. (2010): High-resolution studies on vegetation succession, hydrological variations, anthropogenic impact and genesis of a subrecent lake in southern Ecuador. Vegetation History and Archaeobotany 19, 191-206.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s00334-010-0236-4
-
Resumen:
Resumen:
A lake sediment record from Laguna Campana at 2,488 m a.s.l. in the eastern Ecuadorian Andes allows the reconstruction of local environmental conditions over the past 500 years. A high-resolution multi-proxy approach using pollen, spore, charcoal and XRF analyses provides information about lake genesis, hydrological variations and the development of the surrounding vegetation. Results suggest that Laguna Campana originated from a landslide, which are naturally common and anthropogenically promoted in the study area. Human activities, e.g. deforestation or slash and burn cultivation, impacted the local vegetation development and biodiversity during the recorded period. After a first dense layer of pioneer grasses developed on open soil around the small lake, successional stages of secondary upper mountain rainforest forest mainly composed of Alnus and Weinmannia were observed. The record shows no signs of dense forest regeneration but rather open vegetation with trees and a grassy understory. Especially since ca. A.D. 1980, the proportion of forest in the area was reduced, most probably by fire use for pastures, cultivation and wood extraction. Hydrological variability was derived from differences in minerogenic input and variations in Botryococcus braunii and Sphagnum occurrence. After wettest conditions at the study site, probably triggering the landslide, humid conditions persisted until a time of drier conditions between A.D. 1900 and 1960. A subsequent return to wetter conditions was observed over the last decades. XRF analyses suggest an increase in deposition of atmospherically derived lead since the formation of the lake.
-
Keywords: |
Ecuador |
Andes |
pollen |
multi-proxy |
vegetation history |
anthropogenic impact |
lead |
hydrological variability |