Publicaciones
Se encontró/encontraron 16 Publicaciones(s).
Guillen Otero, T.; Kessler, M. & Homeier, J. (2024): Fern mycorrhizae do not respond to fertilization in a tropical montane forest. Plant-Environment Interactions 5(2), e10139.
-
download
-
link
-
view metadata
-
DOI: 10.1002/pei3.10139
-
Resumen:
Resumen:
Ferns are known to have a lower incidence of mycorrhization than angiosperms. It
has been suggested that this results from carbon being more limiting to fern growth
than nutrient availability, but this assertion has not been tested yet. In the present
study, we took advantage of a fertilization experiment with nitrogen and phosphorus
on cloud forest plots of the Ecuadorean Andes for 15 years. A previous analysis
revealed changes in the abundances of fern species in the fertilized plots compared
to the control plots and hypothesized that this might be related to the responses of
the mycorrhizal relationships to nutrient availability. We revisited the plots to assess
the root-associated
fungal communities of two epiphytic and two terrestrial fern
species that showed shifts in abundance. We sampled and analyzed the roots of 125
individuals following a metabarcoding approach. We recovered 1382 fungal ASVs, with
a dominance of members of Tremellales (Basidiomycota) and Heliotales (Ascomycota).
The fungal diversity was highly partitioned with little overlap between individuals. We
found marked differences between terrestrial and epiphytic species, with the latter
fundamentally missing arbuscular mycorrhizal fungi (AMF). We found no effect of
fertilization on the diversity or relative abundance of the fungal assemblages. Still, we
observed a direct impact of phosphorus fertilization on its concentration in the fern
leaves. We conclude that fern–fungi relationships in the study site are not restricted
by nutrient availability and suggest the existence of little specificity on the fungal
partners relative to the host fern species.
-
Keywords: |
Ecuador |
nitrogen |
phosphorus |
fertilization |
Arbuscular mycorrhizal fungi |
Wilcke, W.; Velescu, A.; Leimer, S. & Valarezo, C. (2020): Water and Nutrient Budgets of Organic Layers and Mineral Topsoils Under Tropical Montane Forest in Ecuador in Response to 15 Years of Environmental Change. In: Levia, D., Carlyle-Moses, D., Iida, S., Michalzik, B., Nanko, K., Tischer, A. (eds.): Forest-Water Interactions (Ecological Studies 240), Springer, Cham, 565-586.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/978-3-030-26086-6_23
-
Resumen:
Resumen:
We quantified the changes in macronutrient storages of the soil in a remote Andean tropical montane rain forest on the rim of the Amazon basin from 1998 to 2013. In the studied 15 years, the N, P, and S fluxes in throughfall+stemflow increased significantly, while those of Ca decreased and of Mg and K remained unchanged. The main reasons for increasing nutrient inputs were Amazonian forest fires. Ca inputs decreased because of a particularly strong Sahara dust deposition event in 1999/2000. On average of the 15 budgeted years, P and K accumulated in the organic layer at a rate doubling their current storages in 197 and 27 years, respectively. The other macronutrients were on average leached from the organic layer, depleting it in 38 (Mg) to 281 years (N). Nutrient leaching was likely favored by enhanced mineralization driven by climate warming. In the upper 30 cm of the mineral soil, all macronutrients accumulated at rates doubling their storages in 57 (Ca) to 601 years (P). Our results demonstrate that the current environmental change increased the nutrient supply of the studied ecosystem. Increased nutrient supply might shift the ecosystem to a new state and change the chemistry of headwater streams.
-
Keywords: |
nitrogen |
phosphorus |
environmental change |
macronutrients |
nutrient storage |
base metals |
sulfur |
Homeier, J.; Báez, S.; Hertel, D. & Leuschner, C. (2017): Editorial: Tropical forest ecosystem responses to increasing nutrient availability. Frontiers in Earth Science 5, 27.
Ahlers, J. (2016): Variabilität der Feinstreuquantität und -qualität sowie die Auswirkungen einer kontinuierlichen N und P Düngung entlang eines Höhengradienten im tropischen Bergregenwald Südecuadors University of Goettingen, bachelor thesis
Müller, A.K.; Matson, A.; Corre, M. & Veldkamp, E. (2015): Soil N2O fluxes along an elevation gradient of tropical montane forests under experimental nitrogen and phosphorus addition. Frontiers in Earth Sscience 3, 66.
-
link
-
view metadata
-
DOI: 10.3389/feart.2015.00066
-
Resumen:
Resumen:
Nutrient deposition to tropical forests is increasing, which could affect soil fluxes of nitrous oxide (N2O), a powerful greenhouse gas. We assessed the effects of 35–56 months of moderate nitrogen (N) and phosphorus (P) additions on soil N2O fluxes and net soil N-cycling rates, and quantified the relative contributions of nitrification and denitrification to N2O fluxes. In 2008, a nutrient manipulation experiment was established along an elevation gradient (1000, 2000, and 3000 m) of montane forests in southern Ecuador. Treatments included control, N, P, and N+P addition (with additions of 50 kg N ha?1 yr?1 and 10 kg P ha?1 yr?1). Nitrous oxide fluxes were measured using static, vented chambers and N cycling was determined using the buried bag method. Measurements showed that denitrification was the main N2O source at all elevations, but that annual N2O emissions from control plots were low, and decreased along the elevation gradient (0.57 ± 0.26–0.05 ±0.04 kg N2O-N ha?1 yr?1). We attributed the low fluxes to our sites' conservative soil N cycling as well as gaseous N losses possibly being dominated by N2. Contrary to the first 21 months of the experiment, N addition did not affect N2O fluxes during the 35–56 month period, possibly due to low soil moisture contents during this time. With P addition, N2O fluxes and mineral N concentrations decreased during Months 35–56, presumably because plant P limitations were alleviated, increasing plant N uptake. Nitrogen plus phosphorus addition showed similar trends to N addition, but less pronounced given the counteracting effects of P addition. The combined results from this study (Months 1–21 and 35–56) showed that effects of N and P addition on soil N2O fluxes were not linear with time of exposure, highlighting the importance of long-term studies.
-
Keywords: |
NUMEX |
nitrogen |
N2O emissions |
Baldos, A.; Corre, M. & Veldkamp, E. (2015): Response of N cycling to nutrient inputs in forest soils across a 1000–3000 m elevation gradient in the Ecuadorian Andes. Ecology 96(3), 749 - 761.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1890/14-0295.1.sm
-
Resumen:
Resumen:
Large areas in the tropics receive elevated atmospheric nutrient inputs. Presently, little is known on how nitrogen (N) cycling in tropical montane forest soils will respond to such increased nutrient inputs. We assessed how gross rates of mineral N production (N mineralization and nitrification) and microbial N retention (NH4+ and NO3- immobilization and dissimilatory NO3- reduction to NH4+ [DNRA]) change with elevated N and phosphorus (P) inputs in montane forest soils at 1000-, 2000-, and 3000-m elevations in
south Ecuador. At each elevation, four replicate plots (20320 m each) of control, N (added at 50 kg N ha-1yr-1), P (added at 10 kg P ha-1 yr-1), and combined N x P additions have been established since 2008. We measured gross N cycling rates in 2010 and 2011, using 15N pool dilution techniques with in situ incubation of intact soil cores taken from the top 5 cm of soil. In control plots, gross soil-N cycling rates decreased with increase in elevation, and microbial N retention was tightly coupled with mineral N production. At 1000 m and 2000 m, four-year N and combined N þ P additions increased gross mineral N production but decreased NH4+ and NO3- immobilization and DNRA compared to the control. At 3000 m, four-year N and combined N x P additions increased gross N mineralization rates and decreased DNRA
compared to the control; although NH4+ and NO3- immobilization in the N and NxP plots were not different from the control, these were lower than their respective mineral N production. At all elevations, decreased microbial N retention was accompanied by decreased microbial biomass C and C:N ratio. P addition did not affect any of the soil-N cycling processes. Our results signified that four years of N addition, at a rate expected to occur at these sites, uncoupled the soil-N cycling processes, as indicated by decreased microbial N retention. This fast response of soil-N cycling processes across elevations implies that greater
attention should be paid to the biological implications on montane forests of such uncoupled soil-N cycling.
-
Keywords: |
NUMEX |
nitrogen |
phosphorus |
Matson, A.; Corre, M.; Burneo Valdivieso, J.I. & Veldkamp, E. (2014): Free-living nitrogen fixation responds to elevated nutrient inputs in tropical montane forest floor and canopy soils of southern Ecuador. Biogeochemistry 122, 281-294.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s10533-014-0041-8
-
Resumen:
Resumen:
Although often overlooked in forest research, the canopy can play an important role in forest nutrient cycling. Since the canopy is spatially isolated from the forest floor, nutrient cycling in the
two areas may differ as terrestrial nutrients accumulate. We measured rates of free-living N2 fixation
along an elevation gradient (1,000, 2,000 and 3,000 m) of tropical montane canopy soils, compared
these to rates measured in the top 5 cm of forest floor soils (excluding fresh litter), and assessed the effects of elevated nutrient inputs to the forest floor. N2 fixation was measured using the acetylene reduction assay. Measurements occurred in the field, in the wet and dry seasons, using intact cores of soil. The forest floor had been fertilized biannually with moderate amounts of nitrogen (N) and phosphorus (P) for 4 years; treatments included control, N, P and N x P. N2 fixation rates exhibited little variation with Elevation but were higher in the dry season than the wet season. Fixation was inhibited in forest floor N plots compared to control and P plots, and stimulated in canopy P plots compared to control. At 2,000 m, the canopy contributed 12 % of measured canopy and forest floor N2 fixation (1.2 kg N ha-1 year-1).
Results suggest that N2 fixation is an active process in canopy soils, which is variable across seasons and
sensitive to changes in terrestrial nutrient availability. Long-term terrestrial accumulation of N and/or P has the potential to significantly change the dynamics of soil N cycling in these canopies.
-
Keywords: |
NUMEX |
nitrogen |
canopy |
nitrogen fixation |
Matson, A.; Corre, M. & Veldkamp, E. (2014): Nitrogen cycling in canopy soils of tropical montane forests responds rapidly to indirect N and P fertilization. Global Change Biiology 20, 3802-3813.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/gcb.12668
-
Resumen:
Resumen:
Although the canopy can play an important role in forest nutrient cycles, canopy-based processes are often overlooked in studies on nutrient deposition. In areas of nitrogen (N) and phosphorus (P) deposition, canopy soils may retain a significant proportion of atmospheric inputs, and also receive indirect enrichment through root uptake followed by throughfall or recycling of plant litter in the canopy. We measured net and gross rates of N cycling in canopy soils of tropical montane forests along an elevation gradient and assessed indirect effects of elevated nutrient inputs to the forest floor. Net N cycling rates were measured using the buried bag method. Gross N cycling rates were measured using 15N pool dilution techniques. Measurements took place in the field, in the wet and dry season,using intact cores of canopy soil from three elevations (1000, 2000 and 3000 m). The forest floor had been fertilized biannually with moderate amounts of N and P for 4 years; treatments included control, N, P, and N + P. In control plots, gross rates of NH4+ transformations decreased with increasing elevation; gross rates of NO3- transformations
did not exhibit a clear elevation trend, but were significantly affected by season. Nutrient-addition effects were different at each elevation, but combined N + P generally increased N cycling rates at all elevations. Results showed that canopy soils could be a significant N source for epiphytes as well as contributing up to 23% of total (canopy + forest floor) mineral N production in our forests. In contrast to theories that canopy soils are decoupled from nutrient cycling in forest floor soil, N cycling in our canopy soils was sensitive to slight changes in forest floor nutrient availability.Long-term atmospheric N and P deposition may lead to increased N cycling, but also increased mineral N losses from the canopy soil system.
-
Keywords: |
NUMEX |
nitrogen |
canopy |
phosphorus |
Kotowska, M. & Werner, F.A. (2013): Environmental controls over methane emissions from bromeliad phytotelmata: The role of phosphorus and nitrogen availability, temperature, and water content. GLOBAL BIOGEOCHEMICAL CYCLES 27, 1-8.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1002/2013GB004612
-
Resumen:
Resumen:
Tank bromeliads are common epiphytic plants throughout neotropical forests that store
signi?cant amounts of water in phytotelmata (tanks) formed by highly modi?ed leafs.
Methanogenic archaea in these tanks have recently been identi?ed as a signi?cant source of
atmospheric methane. We address the effects of environmental drivers (temperature, tank
water content, sodium phosphate [P], and urea [N] addition) on methane production in
anaerobically incubated bromeliad slurry and emissions from intact bromeliad tanks in
montane Ecuador. N addition ? 1 mg g 1 had a signi?cantly positive effect on headspace
methane concentrations in incubation jars while P addition did not affect methane
production at any dosage (? 1 mg g 1 ). Tank bromeliads (Tillandsia complanata) cultivated
in situ showed signi?cantly increased ef?uxes of methane in response to the addition of
26 mg N addition per tank but not to lower dosage of N or any dosage of P (? 5.2 mg plant 1 ).
There was no signi?cant interaction between N and P addition. The brevity of the
stimulatory effect of N addition on plant methane ef?uxes (1–2 days) points at N
competition by other microorganisms or bromeliads. Methane ef?ux from plants closely
followed within-day temperature ?uctuations over 24 h cycles, yet the dependency of
temperature was not exponential as typical for terrestrial wetlands but instead linear. In
simulated drought, methane emission from bromeliad tanks was maintained with minimum
amounts of water and regained after a short lag phase of approximately 24 h. Our results
suggest that methanogens in bromeliads are primarily limited by N and that direct effects of
global change (increasing temperature and seasonality, remote fertilization) on bromeliad
methane emissions are of moderate scale.
-
Keywords: |
nutrients |
gas emission |
NUMEX |
N-cycle |
nitrogen |
Gas exchange |
phosphorus |
nutrient manipulation |
nutrient limitation |
phosphorus availability |
nutrient cycle |
methane |
Wittich, B.; Homeier, J. & Leuschner, C. (2014): Ammonium, nitrate and glycine uptake of six Ecuadorian tropical montane forest tree species: an in situ pot experiment with saplings. Journal of Tropical Ecology xx, xx.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1017/S0266467414000650
-
Resumen:
Resumen:
Not much is known about the nitrogen (N) uptake capacity and N-form preference of tropical trees. In a
replicated labelling experiment with 15N-ammonium, 15N-nitrate and dual-labelled glycine applied to saplings of six
tree species from southern Ecuadorianmontane forests, we tested the hypotheses that (1) the saplings of tropical trees
are capable of using organicNeven though they are forming arbuscularmycorrhizas, and (2) with increasing altitude,
tree saplings increasingly prefer ammonium and glycine over nitrate due to reduced nitrification and growing humus
accumulation. Three- to 5-y-old saplings of two species each from 1000, 2000 and 3000 m asl were grown in pots
inside the forest at their origin and labelled with non-fertilizing amounts of the three N forms; 15N enrichment was
detected 5 days after labelling in fine roots, coarse roots, shoots and leaves. The six species differed with respect to
their N-form preference, but neither the abundance of ammonium and nitrate in the soil nor altitude (1000–3000
m asl) seemed to influence the preference. Two species (those with highest growth rate) preferred NH4+ over NO3?,
while the other four species took up NO3? and NH4+ at similar rates when both N forms were equally available. After
13C-glycine addition, 13C was significantly accumulated in the biomass of three species (all species with exclusively
AM symbionts) but a convincing proof of the uptake of intact glycine molecules by these tropical montane forest trees
was not obtained.
-
Keywords: |
nitrogen |
nitrate |
ammonium |
altitudinal gradient |
15N tracer study |
Graefe, S.; Hertel, D. & Leuschner, C. (2010): N, P and K limitation of fine root growth along an elevation transect in tropical mountain forests. Acta Oecologica 36, 537-542.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.actao.2010.07.007
-
Resumen:
Resumen:
It is generally assumed that tree growth in tropical low-elevation forests is primarily limited by phosphorus
while nitrogen limitation is more prominent in tropical montane forests where temperature is
lower and the soils are poorly developed. We tested this hypothesis in mountain rainforests of South
Ecuador by investigating the growth response of tree fine roots to N, P and K fertilization in ingrowth cores
exposed at 1050 m (pre-montane) and 3060 m (upper montane) elevation. Root growth into unfertilized
ingrowth cores (control treatment) was about 10 times slower at 3060 m than at 1050 m. At 1050 m, root
growth was stimulated not only by P, but also by N and K. In contrast, N was the only element to promote
root growth at 3060 m. The N concentration in fine root biomass dropped to nearly a third between 1050
and 3060 m, those of P, K, Ca and Mg decreased as well, but to a lesser degree. According to a 15NO3
15NH4
tracer study along the slope, tree fine roots accumulated nitrate and ammonium in root biomass at similar
rates between 1050 and 3060 m, despite lower temperatures higher upslope.We conclude that the nature
of nutrient limitation of tree fine root growth changes with elevation from an apparent co-limitation by
P together with N and K at 1050 m to predominant N limitation at 3060 m, which is also reflected by low
foliar N concentrations. Increasing N limitation may have caused the high fine root biomass and root/shoot
ratio in the high elevation forest, while the capability of the roots to acquire mineral N apparently was not
affected by lower temperatures at high elevations.
-
Keywords: |
nitrogen |
phosphorus |
potassium |
nutrient limitation |
ecuador |
fine roots |
15N tracer study |
Rillig, M.C.; Camenzind, T.; Velescu, A.; Wilcke, W.; Homeier, J.; Horn, S. & Hempel, S. (2014): Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology --, --.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/gcb.12618
-
Resumen:
Resumen:
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co-limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454-pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.
-
Keywords: |
ECSF |
NUMEX |
nitrogen |
AM fungi |
nutrient manipulation |
Makowski, S.; Rollenbeck, R.; Fabian, P. & Bendix, J. (2013): Complex topography influences atmospheric nitrate deposition in a neotropical mountain rainforest. Atmospheric environment 79, 385-394.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.atmosenv.2013.06.023
-
Resumen:
Resumen:
Future increase of atmospheric nitrogen deposition in tropical regions is expected to have negative impacts on forests ecosystems and related biogeochemical processes. In tropical mountain forests topography causes complex streamflow and rainfall patterns, governing the atmospheric transport of
pollutants and the intensity and spatial variability of deposition. The main goal of the current study is to link spatio-temporal patterns of upwind nitrogen emissions and nitrate deposition in the San Francisco Valley (eastern Andes of southern Ecuador) at different altitudinal levels. The work is based on Scanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) retrieved-NO2 concentrations, NOx biomass burning emissions from the Global Fire Emissions Database (GFEDv3), and regional vehicle emissions inventory (SA-INV) for urban emissions in South America. The emission data is used as input for lagrangian atmospheric backward trajectory modeling (FLEXTRA) to model the transport to the study area. The results show that NO3 À concentrations in occult precipitation samples are significantly correlated to long-range atmospheric secondary nitrogen transport at the highest meteorological stations (MSs) only, whereas for NO3 À concentrations in rain samples this correlation is more pronounced at the lower MSs. We conclude that ion concentrations in occult precipitation at the uppermost MSs are mainly linked to distant emission sources via the synoptic circulation impinging the more exposed higher sites. Lower correlations close to the valley bottom are due to a lower occult precipitation frequency and point to a contamination of the samples by local pollution sources not captured by the used emission data sources.
-
Keywords: |
wet deposition |
nitrogen |
nitrate |
Southern Ecuador |
Pena Herrera, J.M. (2013): Response of N, P, organic C and Cl concentrations in soil solution to varying precipitation in a tropical montane rain forest of Ecuador University of Berne, Geographic Institute, master thesis
-
log in to download
-
link
-
view metadata
-
Resumen:
Resumen:
The current climate change in the tropical Andean rain forests in south Ecuador alters the distribution of rain events with increasing dry and wet phases. The present research focuses on the concentration response of some elements to signicant changes on rainfall distribution. It seeks to determine whether changes in the concentrations of elements in an ecosystem of a rainforest are an eect of dilution by precipitation or other factors that may be aecting these variations, such as microbiological activities. The study examines chloride, ammonium, nitrate, phosphate, total organic carbon (TOC), dissolved organic nitrogen (DON), and dissolved organic phosphorus (DOP) in soil solution as well as the ratio of organic nitrogen to organic carbon (C : N) in soil solution samples taken in a tropical rain forest of Ecuador. Soil samples were taken weekly from 1998 to 2007, both below the organic layer and 15 and 30 cm into the mineral layer. Concentrations were measured with a chloride electrode , Continuous Flow Analyzer (CFA for ammonium, nitrate, DON, and DOP) and Total Organic Carbon Analyzer. The results were analyzed with statistical
software packages R and SPSS using statistical methods of descriptive statistics and ANOVA. The average weekly precipitation was 38.73 mm and weekly precipitation varied between 0 and 155.2 mm. The variation of chloride concentrations served as reference to detect dilution/concentration effects of the other elements because it is assumed that chloride concentrations behave inversely proportional to the volume of water in soil. Thus, the higher the precipitation the lower is the concentration of chloride in soil solutions. I found that the mineral elements presented similar concentration variations as chloride indicating the strong if not exclusive eect of dilution. The phosphate concentrations were an exception showing irregular variation. Measurement problems due to the low P concentrations, often below the detection limit of the instrument may be the explanation for such irregularities. The variation in chloride-normalized organic components diered from that of chloride. The concentrations of TOC, DON and C : N ratio showed a fairly steep increase with increasing precipitation, especially observable at 15 cm depth in the mineral soil and in some cases also at 30 cm depth. A small TOC consumption by the microbial community during rewetting, a strong microbial TOC production or increased leaching of TOC to the mineral soil are possible explanations for this result. My results demonstrate that the response of inorganic N and P species is mainly driven by concentration/dilution eects while for organic compounds microbial activity in relation to soil moisture was an additional factor controlling the concentrations.
-
Keywords: |
hydrochemistry |
Q2 |
ECSF |
mineral N |
nitrogen |
nitrate |
soil solution |
phosphorus |
DOC |
climate change |
Dislich, C. & Huth, A. (2012): Modelling the impact of shallow landslides on forest structure in tropical montane forests. Ecological Modelling 239, 40-53.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.ecolmodel.2012.04.016
-
Resumen:
Resumen:
Shallow landslides are an important type of natural ecosystem disturbance in tropical montane forests. Due to landslides, vegetation and often also the upper soil layer are removed, and space for primary succession under altered environmental conditions is created. Little is known about how these altered conditions affect important aspects of forest recovery such as the establishment of new tree biomass and species composition. To address these questions we utilize a process-based forest simulation model and develop potential forest regrowth scenarios. We investigate how changes in different trees species characteristics influence forest recovery on landslide sites. The applied regrowth scenarios are: undisturbed regrowth (all tree species characteristics remain like in the undisturbed forest), reduced tree growth (induced by nutrient limitation), reduced tree establishment (due to thicket-forming vegetation and dispersal limitation) and increased tree mortality (due to post-landslide erosion and increased susceptibility). We then apply these scenarios to an evergreen tropical montane forest in southern Ecuador where landslides constitute a major source of natural disturbance. Our most important findings are
(a)
On the local scale of a single landslide tree biomass recovers within the first 80 years after landslides for most scenarios, but it takes at least 200 years for the post-landslide forest to reach a structure (in terms of stem size distribution) similar to a mature forest. On this scale forest productivity is reduced for most regrowth scenarios. Changes in different tree species characteristics produce distinct spatio-temporal patterns of tree biomass distribution in the first decades of recovery within the landslide disturbed area. These patterns can potentially be used for identifying the dominant processes that drive forest recovery on landslide disturbed sites.
(b)
On the larger scale of the landscape overall tree biomass is reduced by 9?15% due to landslide disturbances. Overall forest productivity is only slightly reduced (<6%), but landslides increase landscape heterogeneity and produce hotspots of biomass loss and ?blind spots? of forest productivity. Thus landslides have a strong impact on the distribution of biomass in tropical montane forests.
This study demonstrates that dynamic forest models are useful tools for complementing field based studies on landslides; they allow for testing alternative hypotheses on different sources of heterogeneity across spatial scales and investigating the influence of landslides on long-term forest dynamics.
-
Keywords: |
FORMIND |
landslide |
nitrogen |
tropical montane forest |
forest model |
forest dynamics |
soil organic matter |
Wolf, K.; Veldkamp, E.; Homeier, J. & Martinson, G. (2011): Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Global Biochmical Cycles 25, 12.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1029/2010GB003876
-
Resumen:
Resumen:
Tropical forests are important sources of the greenhouse gas nitrous oxide (N2O) and of nitric oxide (NO), a precursor of ozone. In tropical montane forests nitrogen limitation is common which affects both soil N2O and NO fluxes and forest productivity. Here we present evidence that forest productivity and N-oxide (N2O + NO) fluxes are linked through N availability along elevation and topographic gradients in tropical montane forests. We measured N-oxide fluxes, several indices of N availability, and forest productivity along an elevation gradient from 1000 m to 3000 m and along topographic gradients. Organic layer thickness of the soils increased and N availability decreased with increasing elevation and along the topographic gradient from the lower slope position to the ridges. Annual N2O fluxes ranged from -0.53 µg(N)m-2h-1 to 14.54 µg(N)m-2h-1 while NO fluxes ranged from -0.02 µg(N)m-2h-1 to 1.13 µg(N)m-2h-1. Both N-oxide fluxes and forest productivity increased with increasing N availability and showed close positive correlations with indices of N availability (C/N ratio and  15N signature of litterfall). We interpret the close correlations of N-oxide fluxes with total litterfall and tree basal area increment as evidence that N availability links N-oxide fluxes and forest productivity. This opens the possibility to include forest productivity as co-variable in predictions of N-oxide fluxes in nitrogen limited tropical montane forests. Especially increment of tree basal area was a promising proxy to predict soil N-oxide fluxes in these N limited ecosystems, possibly because it better reflects long-term forest productivity than total litterfall.
-
Keywords: |
nitrogen |
soil N availability |
element fluxes |