Publications
Found 71 publication(s)
- of type
Alvarez Figueroa, P.A.; Velescu, A.; Pierick, K. & Homeier, J. (2024): Sources and sinks of N in ecosystem solutions along the water path through a tropical montane forest in Ecuador assessed with δ15N values of total dissolved nitrogen. Journal of Geophysical Research: Biogeosciences 129, e2024JG008, 1-16.
-
download
-
link
-
view metadata
-
DOI: 10.1029/2024JG008043
-
Abstract:
Abstract:
The globally increasing reactive N richness affects even remote ecosystems such as the tropical montane forests in Ecuador. We tested whether the δ15N values of total dissolved N (TDN), measured directly in solution with a TOC‐IRMS, can be used to help elucidate N sources and sinks along the water path and thus might be suitable for ecosystem monitoring. From 2013 to 2016, the δ15N values of TDN in bulk deposition showed the most pronounced temporal variation of all ecosystem solutions (δ15N values: 1.9–5.9‰). In throughfall (TF), TDN was on average 15N‐depleted (-1.8 ± s.d. 0.4‰) relative to rainfall (3.4 ± 0.9‰), resulting from net retention of isotopically heavy N, mainly as NH4+. Simultaneously, N‐isotopically light NO3‐N and dissolved organic nitrogen (DON) with a δ15N value between NO3‐N and NH4‐N were leached from the canopy (leaves: -3.5 ± 0.5‰). The increasing δ15N values in the order, TF < stemflow (SF, 0.1 ± 0.6‰) < litter leachate (LL, 1.3 ± 0.7‰) concurred with an increasing DON contribution to TDN reflecting the δ15N value of the organic layer (1.9 ± 0.9‰). The lower δ15N value of the mineral soil solution at the 0.15 m soil depth (SS15, -1.5 ± 0.3‰) than in LL can be explained by the retention of DON and NH4+ and the addition of NO3- from mineralization and nitrification. The increasing δ15N values in the order, SS15 < SS30 (-0.6 ± 0.2‰) < streamflow (ST, 0.5 ± 0.6‰) suggested gaseous N losses because of increasing denitrification. There was no seasonality of the δ15N values. Our results demonstrate that the δ15N values of TDN in ecosystem solutions help identify N sources and sinks in forest ecosystems.
-
Keywords: |
throughfall |
15N natural abundance |
rainfall |
litter leachate |
time series |
Barczyk, M.; Acosta Rojas, D.C.; Espinosa, C.I.; Homeier, J.; Tinoco, B.A.; Velescu, A.; Wilcke, W.; Schleuning, M. & Neuschulz, E.L. (2024): Environmental conditions differently shape leaf, seed and seedling trait composition between and within elevations of tropical montane forests. Oikos e10421, 0-10.
Fabian, T. (2023): Vertical distribution of δ13C values in soils as proxy for N mineralisation rates under forest and pasture along an elevational gradient in south Ecuador Karlsruher Institut für Technologie, Institut für Geographie Geoökologie, master thesis
-
download
-
link
-
view metadata
-
Abstract:
Abstract:
Understanding the response of net nitrogen (N) mineralization to climate and land-use change is important to predict the effect of environmental change on the biodiversity and nutrient supply of the tropical montane forest in Ecuador. Slow mineralization or microbial immobilization may limit the availability of N, although organic N stocks in soils are high.
To determine the roles of land use and climate for N mineralization in the mineral topsoil, field incubations over 31 days were conducted with the help of soil-filled PVC cylinders in forest and pasture soils along a land-use and elevation gradient from 1000-3000 m above sea level (a.s.l.). The experiment made use of a threefold replicated, full-factorial design with two land-use types and three elevations. The incubation cylinders were closed both at the bottom and the top and therefore only permitted horizontal water and element fluxes through lateral slits. Start and end concentration of NH4-N and NO3-N were determined in 1 M KCl extracts to calculate net N mineralization as the sum of ammonification and nitrification rates.
Ammonification was significantly higher under pasture than under forest, except at 3000 m a.s.l., where the highest ammonification rates were detected on the forest plots. Nitrification was, in contrast, significantly higher under forest than under pasture, with highest nitrification rates at 2000 m a.s.l. Although the climate was wetter and cooler at higher elevations, mean N mineralization in the mineral soil on the forest sites significantly increased with elevation. On pastures, N mineralization was not significantly related with elevation, which may be explained by soil management and farming intensity.
The slope of the regression line of δ13C values on soil organic C concentrations in 10-cm soil layers revealed a close relationship with the N mineralization rates, indicating that the short-term field incubations reflected the long-term C mineralization regime. The shift to higher δ13C values with increasing depth of the soil profile was related to N turnover and could thus serve as predictor of N mineralization rates on the forest sites, but not on the pastures, where the vertical distribution of the δ13C values was altered by the input of organic matter from C4 grasses after land-use change. Furthermore, the relationship between the slope of the regression line of the enrichment of δ13C values on soil depth and N mineralization measured by in-situ incubation depended on the parent material. The topsoils developed from granodiorite showed lower N mineralization rates than those developed from phyllite and meta-sandstone. Different soil texture, rooting depth, nutrient availability, and different organic layers may provide possible explanations for the observed differences.
-
Keywords: |
land use change |
13C natural abundance |
elevational gradient |
core plots |
net N mineralisation |
Alvarez Figueroa, P.A.; Velescu, A.; Pierick, K.; Homeier, J. & Wilcke, W. (2023): Carbon stable isotope ratios of dissolved organic matter as a tool to identify its sources and transformations in a tropical montane forest in Ecuador. Environmental Science and Technology 57, 14983−14993.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1021/acs.est.3c01623
-
Abstract:
Abstract:
Dissolved organic matter (DOM) contributes to forest C cycling. We assessed temporal variability, sources, and transformations of DOM during four years in a tropical montane forest with the help of stable C isotope ratios (δ13C values). We measured δ13C values of DOM in rainfall (RF), throughfall (TF), stemflow (SF), litter leachate (LL), soil solutions at the 0.15 and 0.30 m depths (SS15, SS30), and streamflow (ST)with TOC-IRMS. The δ13C values of DOM did not vary seasonally. We detected an event with a high δ13C value likely attributable to black carbon from local pasture fires. The mean δ13C values of DOM outside the event decreased in the order, RF (−26.0 ± 1.3‰) > TF (−28.7 ± 0.3‰) > SF (−29.2 ± 0.2‰) > LL (−29.6 ± 0.2‰) because of increasing leaching of C-isotopically light compounds. The higher δ13C values of DOM in SS15 (−27.8 ± 1.0‰), SS30 (−27.6 ± 1.1‰), and ST (−27.9 ± 1.1‰) than in the above-ground solutions suggested that roots and root exudates are major belowground DOM sources. Although in DOM the C/N ratios correlated with the δ13C values when all solutions were considered, this was not the case for SS15, SS30, and ST alone. Thus, the δ13C values of DOM provide an additional tool to assess the sources and turnover of DOM.
-
Keywords: |
C/N ratio |
13C natural abundance |
Dissolved organic carbon |
Acosta Rojas, D.C.; Barczyk, M.; Espinosa, C.I.; Farwig, N.; Homeier, J.; Tiede, Y.; Velescu, A.; Tinoco, B.A.; Wilcke, W.; Neuschulz, E.L. & Schleuning, M. (2023): Abiotic factors similarly shape the distribution of fruit, seed and leaf traits in tropical fleshy-fruited tree communities. Acta Oecologica 121, 103953.
Pierick, K.; Leuschner, C.; Link, R.; Baez, S.; Velescu, A.; Wilcke, W. & Homeier, J. (2024): Above-and belowground strategies of tropical montane tree species are coordinated and driven by small-scale nitrogen availability. Functional Ecology 38, 1364-1377.
-
download
-
link
-
view metadata
-
DOI: 10.1111/1365-2435.14554
-
Abstract:
Abstract:
1. The question whether the strategies of above-and belowground plant organs
are coordinated as predicted by the plant economics spectrum theory is still
under debate. We aim to determine the leading dimensions of tree trait variation
for above-and belowground functional traits, and test whether they represent
spectra of adaptation along a soil fertility gradient in tropical Andean
forests.
2. We measured leaf, stem and fine root functional traits, and individual-level
soil nutrient availability for 433 trees from 52 species at three elevations between
1000 and 3000 m a.s.l.
3. We found close coordination between above– and belowground functional traits
related to the trade-off between resource acquisition and conservation, whereas
root diameter and specific root length formed an independent axis of covarying
traits. The position of a tree species along the acquisition–conservation axis of
the trait space was closely associated with local soil nitrogen, but not phosphorus,
availability.
4. Our results imply that above-and belowground plant functional traits determine
at which edaphic microhabitats coexisting tree species can grow, which is potentially
crucial for understanding community assembly in species-rich
tropical montane forests.
-
Keywords: |
Ecuador |
tropical montane forest |
fine roots |
intraspecific variability |
functional traits |
Velescu, A.; Homeier, J.; Bendix, J.; Valarezo, C. & Wilcke, W. (2021): Response of water-bound fluxes of potassium, calcium, magnesium and sodium to nutrient additions in an Ecuadorian tropical montane forest. Forest Ecology and Management 501(119661), 1-14.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.foreco.2021.119661
-
Abstract:
Abstract:
In the past two decades, the Amazon-exposed, tropical montane rain forests in south Ecuador experienced increasing deposition of reactive N mainly from Amazonian forest fires, episodic Ca and Mg inputs from Saharan dust, and a low but constant P deposition from unknown sources. To explore the response of this tropical, perhumid ecosystem to nutrient inputs, we established in 2007 a Nutrient Manipulation Experiment (NUMEX). Since 2008, we have applied 50 kg ha−1 year−1 of N as urea, 10 kg ha−1 year−1 of P as NaH2PO4·H2O, 50 kg ha−1 year−1 of N + 10 kg ha−1 year−1 of P and 10 kg ha−1 year−1 of Ca as CaCl2·H2O in a randomized block design at 2000 m a.s.l. in a natural forest of the south Ecuadorian Andes. Previous studies have shown that alkali and alkaline earth metals had beneficial effects on the functioning of N and P co-limited tropical forests occurring on acidic soils. Therefore, we determined the response of all major aqueous ecosystem fluxes of K, Ca, Mg and Na to nutrient amendments, to understand how increasing atmospheric deposition would affect their cycling in the future. Additions of N and P decreased K leaching from the organic layer and in the mineral soil, thus tightening K cycling. This suggests that increasing future N and P availability may result in K limitation in the long term. The leaching of Ca and Mg from the canopy increased in response to amendments of N and P and we observed an enhanced uptake of these nutrients also if Ca was amended alone. Although N was applied as urea, acidity of soil solutions and leaching of K, Ca, Mg and Na did not increase following separate N amendments. In spite of the acid soils and of its low cation-exchange competitivity, Na included in the P fertilizer was only partly leached from the organic layer. We suggest that it was probably required to cover an unmet Na demand of the soil fauna. Our results demonstrate the major role in the functioning of the tropical montane forests played by K, Ca and Mg as potential future growth-limiting elements and increasingly required nutrients in response to rising N and P availability, while they also support the importance of Na as a functional element in these ecosystems.
-
Keywords: |
Ecuador |
NUMEX |
nutrient manipulation |
tropical montane forest |
nutrient additions |
base cations |
Dantas De Paula, M.; Forrest, M.; Langan, L.; Bendix, J.; Homeier, J.; Velescu, A.; Wilcke, W. & Hickler, T. (2021): Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytologist -(-), -.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/nph.17600
-
Abstract:
Abstract:
Summary Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61–72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.
-
Keywords: |
mycorrhiza |
dynamic vegetation model |
nutrient cycling |
plant community assembly |
plant functional traits |
tropical montane forests (TMF) |
Bendix, J.; Aguirre, N.; Beck, E.; Bräuning, A.; Brandl, R.; Breuer, L.; Boehning-Gaese, K.; Dantas De Paula, M.; Hickler, T.; Homeier, J.; Inclan, D.; Leuschner, C.; Neuschulz, E.; Schleuning, M.; Suarez, J.P.; Trachte, K.; Wilcke, W. & Farwig, N. (2021): A research framework for projecting ecosystem change in highly diverse tropical mountain ecosystems. Oecologia 2021, 1-13.
-
download
-
link
-
view metadata
-
DOI: 10.1007/s00442-021-04852-8
-
Abstract:
Abstract:
Tropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projec-
tions how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing
between response traits that determine the resistance of species to environmental changes and efect traits that are relevant
for species’ interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface
models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the
response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research
framework that uses a trait-based response-efect-framework (REF) to quantify relationships between abiotic conditions,
the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply
the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient
to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-
LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to
changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to
changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation
of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are
key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems.
-
Keywords: |
Biodiversity-Land-Surface-Model |
Wilcke, W.; Velescu, A.; Leimer, S.; Blotevogel, S.; Alvarez Figueroa, P.A. & Valarezo, C. (2020): Total organic carbon concentrations in ecosystem solutions of a remote tropical montane forest respond to global environmental change. Global Change Biology 26, 6989–7005.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/gcb.15351
-
Abstract:
Abstract:
The response of organic carbon (C) concentrations in ecosystem solutions to environmental change affects the release of dissolved organic matter (DOM) from forests to surface and groundwaters. We determined the total organic C (TOC) concentrations (filtered <1–7 μm) and the ratios of TOC/dissolved organic nitrogen (DON) concentrations, electrical conductivity (EC), and pH in all major ecosystem solutions of a tropical montane forest from 1998 to 2013. The forest was located on the rim of the Amazon basin in Ecuador and experienced increasing numbers of days with >25°C, decreasing soil moisture, and rising nitrogen (N) deposition from the atmosphere during the study period. In rainfall, throughfall, mineral soil solutions (at the 0.15- and 0.30-m depths), and streamflow, TOC concentrations and fluxes decreased significantly from 1998 to 2013, while they increased in stemflow. TOC/DON
ratios decreased significantly in rainfall, throughfall, soil solution at the 0.15-m depth, and streamflow. Based on Δ14C values, the TOC in rainfall and mineral soil solutions was 1 year old and that of litter leachate was 10 years old. The pH in litter leachate decreased with time, that in mineral soil solutions increased, while those in the other ecosystem solutions did not change. Thus, reduced TOC solubility because of lower pH values cannot explain the negative trends in TOC concentrations in most ecosystem
solutions. The increasing TOC concentrations and EC in stemflow pointed at an increased leaching of TOC and other ions from the bark. Our results suggest an accelerated degradation of DOM, particularly of young DOM, associated with the production of N-rich compounds simultaneously to changing climatic conditions and increasing N availability. Thus, environmental change increased the CO2 release to the atmosphere but reduced DOM export to surface and groundwater.
-
Keywords: |
Dissolved organic carbon |
time series |
carbon-14 dating |
TOC:DON ratio |
ecosystem fluxes |
Wilcke, W. (2021): Litterfall in Andean forests: Quantity, composition, and environmental drivers. In: Randall W. Myster (eds.): The Andean Cloud Forest ( ), Springer Nature Switzerland, Basel, Switzerland, 89-110.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/978-3-030-57344-7_5
-
Abstract:
Abstract:
Litterfall is the most easily and most frequently measured part of net primary productivity (NPP) of forests. It has been shown that litterfall accounts for about one third of total NPP and thus serves as a proxy for the total productivity of forests. Moreover, litterfall carries nutrients from the forest canopy to the soil and therefore is also a major vector of nutrient cycling. I reviewed the published literature about litterfall rates and chemical properties in Andean forests and found reports from 44 forest sites, which I evaluated together with unpublished data from 12 sites in a lower montane forest in Ecuador. I found many more reports from tropical (52 sites) than from temperate Andean forests (4 sites). In the humid tropical north Andes, litterfall showed a hump-shaped elevational distribution. It increased from premontane to lower montane forests and decreased to upper montane forests. The tropical lower montane forest had a similar productivity than tropical lowland forests. The litterfall of the temperate southern beech forests was similar to that of the tropical upper montane forests. The C/N and C/P ratios of litterfall decreased with increasing elevation, while the N/P ratios were not correlated with elevation. This illustrates that the forests become increasingly nutrient efficient with increasing elevation, while there is no indication of a general change in the kind of nutrient limitation. There was a negative correlation between litterfall and soil organic layer thickness (r = −0.61, p < 0.001) illustrating that the organic matter input via litterfall is a less important driver of organic matter accumulation on top of the mineral soil than other, mainly abiotic properties including temperature and soil waterlogging. My evaluation suggests that there are systematic relationships between abiotic conditions and litterfall, which could be used to predict litterfall in the Andes. However, the data coverage particularly of the southern Andes (Bolivia, Chile, Argentina), the Andean dry forests, and the widespread tree plantations is poor. The observed elevational influence on litterfall in the humid tropical Andes suggests that the forest productivity will likely respond to climate change driving the vegetation belts to higher elevation with an unknown overall effect on C sequestration of these forests.
-
Keywords: |
nutrient cycle |
elevational gradient |
macronutrients |
Aboveground forest productivity |
Fine litter production |
Nellessen, T. (2020): Does sodium stimulate the decomposition of the organic layer in two tropical rain forests in Ecuador? Karlsruher Institut für Technologie, Institut für Geographie und Geoökologie, bachelor thesis
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
In nutrient-poor tropical forests litter decomposition is essential for the supply of nutrients to plants. This process is in turn controlled by nutrient availability. Beside nitrogen (N) and phosphorus (P) other elements may co-limitate litter decomposition. Studies revealed a relationship between sodium (Na) shortage and reduced litter decomposition which can decrease the mineralization of stored carbon (C).
Investigations of element fluxes of a Na-poor tropical montane rainforest in southern Ecuador have shown low atmospheric deposition rates since 1998. Additionally, Na was retained in different parts of the ecosystem. A study found that the Na-retention in the canopy was related to the Na demand of the microorganisms in the phyllosphere.
Because the Na budget of the organic layer was also positive, it was assumed that decomposers may experience a lack of Na due to low atmospheric deposition. Thus, one main goal was to investigate whether Na fertilization accelerates litter decomposition. Based on the assumption of a higher Na demand of soil fauna than of microorganisms, it was also tested whether the stimulation of soil organisms by Na is limited to the soil fauna.
To test these hypotheses, a combined litter decomposition and Na fertilization experiment was conducted in an evergreen premontane rainforest and a montane rainforest in south Ecuador. Fresh litter was incubated in the field and fertilized weekly with different Na concentrations which were similar to the natural deposition rates. Litterbags with different mesh sizes allowed to study the effects of Na fertilization on microbes and mesofauna separately. Additionally, a bait lamina experiment was installed in the organic layer to study the uptake of Na fertilized baits by soil organisms. Differences of the bait loss between the fertilized and the control group should indicate a potential stimulation of the soil organisms by a Na-addition.
The statistical analysis confirmed the stimulation of litter decomposition by Na additions. The comparison of both sites revealed a slightly stronger effect of Na additions in the premontane forest than in the montane forest. The accelerated litter decomposition was related to an increased activity of the soil fauna. However, a significant stimulation of microorganisms by Na additions could not be detected. The bait lamina experiment confirmed the results of the litter decomposition experiment and showed a marginally significant increase of the activity of soil organisms by Na fertilization.
Sodium can stimulate the decomposition of the organic layer in the studied premontane and montane rainforest, thus affecting ecosystem functioning. Na supply is of higher importance in the ecosystem than usually assumed and its relevance for the C turnover in the organic layer may increase if the atmospheric Na deposition remains on the present low level.
-
Keywords: |
Q2 |
San Francisco |
Bombuscaro |
decomposition |
sodium |
organic layer |
sodium limitation |
sodium retention |
Wilcke, W.; Velescu, A.; Leimer, S. & Valarezo, C. (2020): Water and Nutrient Budgets of Organic Layers and Mineral Topsoils Under Tropical Montane Forest in Ecuador in Response to 15 Years of Environmental Change. In: Levia, D., Carlyle-Moses, D., Iida, S., Michalzik, B., Nanko, K., Tischer, A. (eds.): Forest-Water Interactions (Ecological Studies 240), Springer, Cham, 565-586.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/978-3-030-26086-6_23
-
Abstract:
Abstract:
We quantified the changes in macronutrient storages of the soil in a remote Andean tropical montane rain forest on the rim of the Amazon basin from 1998 to 2013. In the studied 15 years, the N, P, and S fluxes in throughfall+stemflow increased significantly, while those of Ca decreased and of Mg and K remained unchanged. The main reasons for increasing nutrient inputs were Amazonian forest fires. Ca inputs decreased because of a particularly strong Sahara dust deposition event in 1999/2000. On average of the 15 budgeted years, P and K accumulated in the organic layer at a rate doubling their current storages in 197 and 27 years, respectively. The other macronutrients were on average leached from the organic layer, depleting it in 38 (Mg) to 281 years (N). Nutrient leaching was likely favored by enhanced mineralization driven by climate warming. In the upper 30 cm of the mineral soil, all macronutrients accumulated at rates doubling their storages in 57 (Ca) to 601 years (P). Our results demonstrate that the current environmental change increased the nutrient supply of the studied ecosystem. Increased nutrient supply might shift the ecosystem to a new state and change the chemistry of headwater streams.
-
Keywords: |
nitrogen |
phosphorus |
environmental change |
macronutrients |
nutrient storage |
base metals |
sulfur |
Knoke, T.; Paul, C.; Rammig, A.; Gosling, E.; Hildebrandt, P.; Härtl, F.; Peters, T.; Richter, M.; Diertl, K.; Castro, L.M.; Calvas, B.; Ochoa Moreno, S.; Valle-Carrión, L.A.; Hamer, U.; Tischer, A.; Potthast, K.; Windhorst, D.; Homeier, J.; Wilcke, W.; Velescu, A.; Gerique, A.; Pohle, P.; Adams, J.; Breuer, L.; Mosandl, R.; Beck, E.; Weber, M.; Stimm, B.; Silva, B.; Verburg, P.H. & Bendix, J. (2020): Accounting for multiple ecosystem services in a simulation of land-use decisions: Does it reduce tropical deforestation?. Global Change Biology 26( ), 1-22.
-
link
-
view metadata
-
DOI: 10.1111/gcb.15003
-
Abstract:
Abstract:
Abstract Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decision-making. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision-makers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975–2015) in the projected land-use allocation (2015–2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%–80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.
-
Keywords: |
Ecuador |
biodiversity |
ecosystem services |
landscape restoration |
land allocation |
robust optimization |
Wilcke, W.; Velescu, A.; Leimer, S.; Bigalke, M.; Boy, J. & Valarezo, C. (2019): Temporal Trends of Phosphorus Cycling in a Tropical Montane Forest in Ecuador During 14 Years. Journal of Geophysical Research: Biogeosciences 124, 1370-1386.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1029/2018JG004942
-
Abstract:
Abstract:
Increased bioavailability of P can have a negative impact on plant biodiversity. In an approximately 9‐ha catchment under N + P‐limited megadiverse tropical montane forest in Ecuador, we budgeted all major P fluxes and determined whether the P fluxes changed from 1999 to 2013. Furthermore, we assessed which external drivers (rainfall, total P and acid deposition) caused this potential change. Mean (±SD) annual P deposition (bulk+dry) was 240 ± 270 mg/m2, with the SD reflecting the interannual variation. The annual P flux to the soil via throughfall+stemflow+litterfall was 1,400 ± 170 mg/m2 of which 18 ± 9.2% was leached to below the organic layer. The mineral soil retained 80 ± 12% of the P leached from the organic layer. The mean annual P weathering rate was 79 ± 63 mg/m2. The sum of P fluxes was approximately 5 times larger above than below the mineral soil surface, illustrating that P was tightly cycled in the biological part of the forest. The mean annual canopy budget was negative (−120 ± 280 mg/m2); that is, P was leached from the canopy. Throughfall was the largest source of dissolved P. The P catchment budget (total deposition‐streamflow) was positive (200 ± 270 mg/m2); that is, P was retained, mainly in the soil organic layer. From 1999 to 2013, P fluxes with throughfall, stemflow, and streamflow increased significantly. The strongest driver of the P budgets of the canopy and the catchment was total P deposition. Our results demonstrate that mainly biological processes retained deposited P in the vegetation and the organic layer enhancing the internal P cycle.
-
Keywords: |
litterfall |
temporal trends |
catchment budget |
weathering rates |
phosphorus fluxes |
Fabian, T. (2017): Sodium retention in the canopy of a tropical montane forest in South Ecuador Karlsruher Institut für Technologie, Institut für Geographie und Geoökologie, bachelor thesis
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
Recent studies raise the hypothesis that Na shortage restricts decomposition and affects the carbon cycle in tropical forests. When Na concentrations in soils are low and the stands are far off-coast, they do not receive substantial Na inputs from the atmosphere. Since terrestrial plants have low concentrations of Na, which is not considered as an essential element, the demand of soil fauna may not be covered. Yet, in contrast to animals, little is known on Na demands of phyllosphere microorganisms.
This thesis presents results from a study on Na limitation in a montane forest ecosystem in South Ecuador, which is located on the Eastern cordillera of the Andes, in a microcatchment under an undisturbed lower montane rainforest. The study area is characterized by low Na concentrations because of low deposition rates with incident precipitation and by low Na stocks in in the soils and in the organic layer. Sodium fluxes in rainfall, throughfall, stemflow, litter leachate, litterfall and organic layer have been monitored since 1998. Results reveal overall low Na concentrations in the ecosystem fluxes. Higher Na fluxes with incident rainfall than with throughfall suggest that Na is retained in the canopy. Therefore, this study aims at testing the hypothesis that Na is retained in the canopy because of Na limitation of microorganisms in phyllosphere.
To explore the role of the phyllosphere in Na retention, I sampled leaves covered by phyllosphere microorganisms and leaves without phyllosphere cover from 12 tree species belonging to 7 plant families frequently occurring in the study area. The fresh leaves were sprayed with a NaCl solution containing 1 mg L-1 Na, corresponding to the Na concentration in incident rainfall in the study area during La Niña events. Comparison with a control treatment excluded effects by abiotic Na fixation on the surface of the leaves.
The results show that increasing phyllosphere cover leads to a significantly enhanced Na retention, which is much higher on understory tree leaves than on leaves of the upper canopy. Leaching of K, Ca and Mg was higher with increasing degree of phyllosphere cover, which can be attributed to increasing element exchange between foliage and phyllosphere with leaf age. These results suggest that Na availability possibly plays a regulating role in the study ecosystem which might even grow in importance if Na deposition from the atmosphere continues to decrease or stabilizes at the current low level.
-
Keywords: |
Q2 |
canopy |
sodium |
phyllosphere |
sodium limitation |
sodium retention |
Wilcke, W.; Velescu, A.; Leimer, S.; Bigalke, M.; Boy, J. & Valarezo, C. (2017): Biological versus geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years. Biogeochemistry 136, 167-189.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s10533-017-0386-x
-
Abstract:
Abstract:
To assess the susceptibility of the base metal budget of a remote tropical montane forest in Ecuador to environmental change, we determined the extent of biological control of base metal fluxes and explored the impact of atmospheric inputs and precipitation considered as potential drivers of ecosystem change on the base metal fluxes. We quantified all major base metal fluxes in a ca. 9.1 ha forested catchment from 1998 to 2013. Mean (±s.d.) annual flux to the soil via throughfall+ stemflow+litterfall was 13800±1500 mg m-2 Ca, 19000±1510 mg m-2 K, 4690±619 mg m-2 Mg and 846±592 mg m-2 Na of which 22±6%, 45±16%, 39±10% and 84±33%, respectively, were leached to below the organic layer. The mineral soil retained 79-94% of this Ca, K and Mg, while Na was released. Weathering rates estimated with three different approaches ranged from not detected (ND) to 504 mg m-2 yr-1 Ca, ND-1769 mg m-2 yr-1 K, 287-597 mg m-2 yr-1 Mg and 403-540 mg m-2 yr-1 Na. The size of mainly biologically controlled aboveground fluxes of Ca, K and Mg was 1-2 orders of magnitude larger than that of mainly geochemically controlled fluxes (sorption to soil and weathering). The elemental catchment budgets (total deposition-streamflow) were positive for Ca (574±893 mg m-2) and K (1330±773 mg m-2), negative for Na (-370±1300 mg m-2) and neutral for Mg (1.89±304 mg m-2). Our results demonstrate that biological processes controlled element retention for Ca, K and Mg in the biological part of the ecosystem. This was different for Na, which was mainly released by weathering from the study catchment, while the biological part of the ecosystem was Na-poor. The deposition of base metals was the strongest driver of their budgets suggesting that the base metal cycling of the study ecosystem is susceptible to changing deposition.
-
Keywords: |
throughfall |
litterfall |
stem flow |
alkaline dust deposition |
acid deposition |
catchment budget |
stream flow |
weathering rates |
Fabian, T.; Velescu, A.; Camenzind, T.; Wilcke, W. & Rillig, M.C. (2017-04-09). Sodium in a tropical montane forest in South Ecuador: demand of phyllosphere microorganisms and effects on decomposition. Presented at Annual conference of the German society for soil science (DBG), Göttingen, Germany.
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
Recent studies raise the hypothesis that Na shortage restricts decomposition and affects the carbon cycle in tropical forests. When Na concentrations in soils are low and the stands are far off-coast, they do not receive substantial Na inputs from the atmosphere. Since terrestrial plants have low concentrations of Na, which is not considered as an essential element, the demand of soil fauna may not be covered. Yet, in contrast to animals, little is known of Na demands of fungi and phyllosphere microorganisms.
We present results from a study on Na limitation in a montane forest ecosystem in South Ecuador, which is located on the eastern cordillera of the Andes. We tested the hypotheses that (1) the study area is characterized by low Na concentrations because of low deposition rates with incident precipitation (wind directions mainly from the Amazonian Basin), (2) decomposition processes are limited by fauna and fungal Na restrictions and (3) Na is retained in the canopy because of Na limitation of microorganisms in phyllosphere.
Since 1998, we measure Na fluxes in rainfall, throughfall, stemflow, litter leachate, litterfall and organic layer in a microcatchment under an undisturbed lower montane rainforest. Results reveal comparatively low Na concentrations in the ecosystem and similar Na concentrations in throughfall and stemflow. Since Na fluxes are lower with throughfall than with incident rainfall, we conclude that Na is retained in the canopy.
To explore the role of the phyllosphere in Na retention we sampled leaves covered by phyllosphere microorganisms and leaves without phyllosphere cover from several tree species, which were sprayed with a NaCl solution containing 0.5 mg L-1 Na, corresponding to the Na concentration in incident rainfall in our study area.
Additionally, responses of litter decomposition to Na additions and the involved interaction of soil fungi and fauna were tested in a litterbag experiment at two sites (1000 and 2000 m a.s.l.). Results revealed enhanced decomposition rates following Na additions, though only in the presence of soil fauna.
These results might have future ecosystem implications, since our time series showed that total Na deposition decreased within the past 15 years from ca. 40 kg ha-1 a-1 to 10 kg ha-1 a-1, suggesting a potential role of Na in regulating ecosystem processes.
-
Keywords: |
decomposition |
neotropical mountain rain forest |
phyllosphere |
sodium limitation |
Rehmus, A.; Bigalke, M.; Boy, J.; Valarezo, C. & Wilcke, W. (2016): Aluminum cycling in a tropical montane forest ecosystem in southern Ecuador. Geoderma 288, 196-203.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.geoderma.2016.11.002
-
Abstract:
Abstract:
Growth limitation induced by Al toxicity is believed to commonly occur in tropical forests, although a direct proof is frequently lacking. To test for the general assumption of Al toxicity, Al, Ca, and Mg concentrations in precipitation, throughfall, stemflow, organic layer leachate, mineral soil solutions, stream water, and the leaves of 17 native tree species were analyzed. We calculated Al fluxes and modeled Al speciation in the litter leachate and mineral soil solutions. We assessed potential Al toxicity based on soil base saturation, Al concentrations, Ca:Al and Mg:Al molar ratios and Al speciation in soil solution as well as Al concentrations and Ca:Al andMg:Al molar ratios in tree leaves. High Al fluxes in litterfall (8.77±1.3 to 14.2±1.9 kg ha?1 yr?1, mean ± SE) indicated a high Al circulation through the ecosystem. The fraction of exchangeable and
potentially plant-available Al in mineral soils was high, being a likely reason for a low root length density in
the mineral soil. However, Al concentrations in all solutions were consistently below critical values and
Ca:Al molar and the Ca2+:Alinorganic molar ratios in the organic layer leachate and soil solutions were above 1, the suggested threshold for Al toxicity. Except for two Al-accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves were above the Al toxicity threshold of 12.5. Our results demonstrate high Al cycling through the vegetation partly because of the presence of some Al accumulator plants. However, there was little indication of an Al toxicity risk in soil and of acute Al toxicity in plants likely reflecting that tree species are well adapted to the environmental conditions at our study site and thus hardly prone to Al toxicity.
-
Keywords: |
aluminum toxicity |
tropical forest ecosystems |
aluminum fluxes |
aluminum speciation |
molar Ca:Al ratios |
Velescu, A.; Valarezo, C. & Wilcke, W. (2016): Response of dissolved carbon and nitrogen concentrations to moderate nutrient additions in a tropical montane forest of South Ecuador. Frontiers in Earth Science 4(58), 1-18.
-
log in to download
-
link
-
view metadata
-
DOI: 10.3389/feart.2016.00058
-
Abstract:
Abstract:
In the past two decades, the tropical montane rain forests in south Ecuador experienced increasing deposition of reactive nitrogen mainly originating from Amazonian forest fires, while Saharan dust inputs episodically increased deposition of base metals. Increasing air temperature and unevenly distributed rainfall have allowed for longer dry spells in a perhumid ecosystem. This might have favored mineralization of dissolved organic matter (DOM) by microorganisms and increased nutrient release from the organic layer. Environmental change is expected to impact the functioning of this ecosystem belonging to the biodiversity hotspots of the Earth.
In 2007, we established a nutrient manipulation experiment (NUMEX) to understand the response of the ecosystem to moderately increased nutrient inputs. Since 2008, we have continuously applied 50 kg ha-1 a-1 of nitrogen (N), 10 kg ha-1 a-1 of phosphorus (P), 50 kg + 10 kg ha-1 a-1 of N and P and 10 kg ha-1 a-1 of calcium (Ca) in a randomized block design at 2000 m a.s.l. in a natural forest on the Amazonia-exposed slopes of the south Ecuadorian Andes.
Nitrogen concentrations in throughfall increased following N+P additions, while separate N amendments only increased nitrate concentrations. Total organic carbon (TOC) and dissolved organic nitrogen (DON) concentrations showed high seasonal variations in litter leachate and decreased significantly in the P and N+P treatments, but not in the N treatment. Thus, P availability plays a key role in the mineralization of DOM. TOC/DON ratios were narrower in throughfall than in litter leachate but their temporal course did not respond to nutrient amendments.
Our results revealed an initially fast, positive response of the C and N cycling to nutrient additions which declined with time. TOC and DON cycling only change if N and P supply are improved concurrently, while NO3-N leaching increases only if N is separately added. This indicates co-limitation of the microorganisms by N and P. The current increasing reactive N deposition will increase N export from the root zone, while it will only accelerate TOC and DON turnover if P availability is simultaneously increased. The Saharan dust-related Ca deposition has no impact on TOC and DON turnover.
-
Keywords: |
Ecuador |
NUMEX |
nutrient manipulation |
tropical montane forest |
dissolved organic N |
nutrient additions |
total organic C |
nitrate leaching |
Rehmus, A.; Bigalke, M.; Valarezo, C.; Mora Castillo, J.R. & Wilcke, W. (2015): Aluminium toxicity to tropical montane forest tree seedlings in southern Ecuador: Response of the nutrient status to elevated Al concentrations. Plant and Soil 388, 87-97.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s11104-014-2276-5
-
Abstract:
Abstract:
Aims We determined the reasons why in nutrient solution increasing Al concentrations>300 ?M inhibited
shoot biomass production of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha
(Jacq.) G. Nicholson while 300 ?M Al stimulated root biomass production of Tabebuia chrysantha.
Methods Nutrient concentrations in plant tissue after a hydroponic growth experiment were determined.
Results Increasing Al concentrations significantly decreased Mg concentrations in leaves. Phosphorus
concentrations in roots of C. odorata and T. chrysantha were significantly highest in the treatment with 300 ?M Al and correlated significantly with root biomass.
Conclusions Shoot biomass production was likely inhibited by reduced Mg uptake, impairing photosynthesis.
The stimulation of root growth at low Al concentrations can be possibly attributed to improved P uptake.
-
Keywords: |
phosphorus |
aluminum toxicity |
tropical forest tree seedling |
nutrient deficiency |
growth stimulation |
Rehmus, A.; Bigalke, M.; Valerezo, C.; Mora Castillo, J.R. & Wilcke, W. (2014): Aluminum toxicity to tropical montane forest tree seedlings in southern Ecuador: response of biomass and plant morphology to elevated Al concentrations. Plant and Soil 382(1-2), 301–315.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s11104-014-2110-0
-
Abstract:
Abstract:
Aims: In acid tropical forest soils (pH <5.5)increased mobility of aluminum might limit aboveground productivity. Therefore, we evaluated Al phytotoxicity of three native tree species of tropical montane
forests in southern Ecuador.
Methods: An hydroponic dose-response experiment was conducted. Seedlings of Cedrela odorata L., Heliocarpus americanus L., and Tabebuia chrysantha(Jacq.) G. Nicholson were treated with 0, 300, 600, 1200, and 2400 ?M Al and an organic layer leachate. Dose-response curves were generated for root and shoot morphologic properties to determine effective concentrations (EC).
Results: Shoot biomass and healthy leaf area decreased by 44 % to 83 % at 2400 ?M Al, root biomass did
not respond (C. odorata), declined by 51 % (H. americanus), or was stimulated at low Al concentrations
of 300 ?M (T. chrysantha). EC10 (i.e. reduction 10 %) values of Al for total biomass were 315 ?M
(C. odorata), 219 ?M (H. americanus), and 368 ?M (T. chrysantha). Helicarpus americanus, a fast growing
pioneer tree species, was most sensitive to Al toxicity. Negative effects were strongest if plants grew
in organic layer leachate, indicating limitation of plant growth by nutrient scarcity rather than Al toxicity.
Conclusions: Al toxicity occurred at Al concentrations
far above those in native organic layer leachate.
-
Keywords: |
aluminum toxicity |
tropical tree seedlings |
dose-response curves |
organic layer leachate |
Rillig, M.C.; Camenzind, T.; Velescu, A.; Wilcke, W.; Homeier, J.; Horn, S. & Hempel, S. (2014): Nitrogen and phosphorus additions impact arbuscular mycorrhizal abundance and molecular diversity in a tropical montane forest. Global Change Biology --, --.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/gcb.12618
-
Abstract:
Abstract:
Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co-limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454-pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.
-
Keywords: |
ECSF |
NUMEX |
nitrogen |
AM fungi |
nutrient manipulation |
Wullaert, H.; Bigalke, M.; Homeier, J.; Cumbicus Torres, N.; Valarezo, C. & Wilcke, W. (2013): Short-term response of the Ca cycle of a montane forest in Ecuador to low experimental CaCl2 additions. Journal of Plant Nutrition and Soil Science 176(6), 892-903.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1002/jpln.201300146
-
Abstract:
Abstract:
The tropical montane forests of the E Andean cordillera in Ecuador receive episodic Sahara dust inputs particularly increasing Ca deposition. We added CaCl2 to isolate the effect of Ca deposition by Sahara dust to tropical montane forest from the simultaneously occurring pH effect. We examined components of the Ca cycle at four control plots and four plots with added Ca (2 × 5 kg ha–1 Ca annually as CaCl2) in a random arrangement. Between August 2007 and December 2009 (four applications of Ca), we determined Ca concentrations and fluxes in litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall, and fine litterfall and Al concentrations and speciation in soil solutions. After 1 y of Ca addition, we assessed fine-root biomass, leaf area, and tree growth. Only < 3% of the applied Ca leached below the acid organic layer (pH 3.5–4.8). The added CaCl2 did not change electrical conductivity in the root zone after 2 y. In the second year of fertilization, Ca retention in the canopy of the Ca treatment tended to decrease relative to the control. After 2 y, 21% of the applied Ca was recycled to soil with throughfall and litterfall. One year after the first Ca addition, fine-root biomass had decreased significantly. Decreasing fine-root biomass might be attributed to a direct or an indirect beneficial effect of Ca on the soil decomposer community. Because of almost complete association of Al with dissolved organic matter and high free Ca2+ : Al3+ activity ratios in solution of all plots, Al toxicity was unlikely. We conclude that the added Ca was retained in the system and had beneficial effects on some plants.
-
Keywords: |
tree growth |
NUMEX |
roots |
calcium |
aluminium |
nutrient cycle |
Wilcke, W.; Leimer, S.; Peters, T.; Emck, P.; Rollenbeck, R.; Trachte, K.; Valarezo, C. & Bendix, J. (2013): The nitrogen cycle of tropical montane forest in Ecuador turns inorganic under environmental change. Global Biogeochemical Cycles 27(4), 1194-1204.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1002/2012GB004471
-
Abstract:
Abstract:
Water-bound nitrogen (N) cycling in temperate terrestrial ecosystems of the Northern
Hemisphere is today mainly inorganic because of anthropogenic release of reactive N to
the environment. In little-industrialized and remote areas, in contrast, a larger part of
N cycling occurs as dissolved organic N (DON). In a north Andean tropical montane forest
in Ecuador, the N cycle changed markedly during 1998–2010 along with increasing
N deposition and reduced soil moisture. The DON concentrations and the fractional
contribution of DON to total N significantly decreased in rainfall, throughfall, and soil
solutions. This inorganic turn of the N cycle was most pronounced in rainfall and became
weaker along the flow path of water through the system until it disappeared in stream water.
Decreasing organic contributions to N cycling were caused not only by increasing inorganic
N input but also by reduced DON production and/or enhanced DON decomposition.
Accelerated DON decomposition might be attributable to less waterlogging and higher
nutrient availability. Significantly increasing NO3-N concentrations and NO3-N/NH4-N
concentration ratios in throughfall and litter leachate below the thick organic layers indicated
increasing nitrification. In mineral soil solutions, in contrast, NH4-N concentrations increased and NO3-N/NH4-N concentration ratios decreased significantly, suggesting increasing net ammonification. Our results demonstrate that the remote tropical montane forests on the rim of the Amazon basin experienced a pronounced change of the N cycle in only one decade. This change likely parallels a similar change which followed industrialization in the temperate zone of the Northern Hemisphere more than a century ago.
-
Keywords: |
climate change |
nitrification |
N deposition |
terrestrial N cycling |
dissolved organic N |
Bendix, J.; Beck, E.; Bräuning, A.; Makeschin, F.; Mosandl, R.; Scheu, S. & Wilcke, W. 2013: Ecosystem Services, Biodiversity and Environmental Change in a Tropical Mountain Ecosystem of South Ecuador.: Ecological Studies 221 (Springer-Verlag, Berlin Heidelberg).
Homeier, J.; Hertel, D.; Camenzind, T.; Cumbicus Torres, N.; Maraun, M.; Martinson, G.; Poma, N.; Rillig, M.C.; Sandmann, D.; Scheu, S.; Veldkamp, E.; Wilcke, W.; Wullaert, H. & Leuschner, C. (2012): Tropical Andean Forests Are Highly Susceptible to Nutrient Inputs - Rapid Effects of Experimental N and P Addition to an Ecuadorian Montane Forest. PLoS ONE 7, e47128.
Wilcke, W.; Boy, J.; Goller, R.; Fleischbein, K.; Valarezo, C. & Zech, W. (2011): Effect of topography on soil fertility and water flow in an Ecuadorian lower montane forest. In: L.A. Bruijnzeel, F.N. Scatena & L.S. Hamilton (eds.): Tropical Montane Cloud Forests: Science for Conservation and Management ( ), Cambridge University Press, Cambridge, UK, 402-409.
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
Tropical montane forests are frequently located on steep slopes with pronounced differences in topographic exposure, related microclimatic conditions and hence in composition and structure of the vegetation over small distances. The objective of this work was to test the hypothesis that topographic position significantly influences soil fertility and water flow in these forests. Soil properties were determined at various topographic positions and water samples of selected ecosystem fluxes analyzed over a 1-year period for oxygen isotopes in three small, steep watersheds under lower montane forest in the Eastern Cordillera of the Andes in southern Ecuador. The soils are subject to lateral material movement (landsliding and solifluction). This, together with the pronounced variation in climatic conditions and vegetation over small distances, resulted in high heterogeneity of soil properties. The pH of the A-horizon ranged between 3.7 and 6.4; concentrations of base metals (calcium, magnesium), sulfur and phosphorus, and trace metals (manganese, zinc) showed enormous spatial variation (coefficient of variation: 358?680% over a surface area of <30 ha). The steepness of the study area and the large contrast in hydraulic conductivities of the organic
layer and the mineral soil resulted in a hillslope flow regime dominated by fast lateral flow. During baseflow conditions, d18O values were similar to that of the subsoil solution, but rapidly became similar to values in the top-soil solution during rain storms. The chemical composition of stormflows resembled that of the litter leachate. Stormflow had lower pH and higher organic carbon and metal concentrations than did baseflow. It is concluded that topographic position and lateral
transport of water and matter (as a consequence of the pronounced inclination) are important controls of the water and nutrient cycles of the study forest.
Fleischbein, K.; Wilcke, W.; Goller, R.; Valarezo, C.; Zech, W. & Knoblich, K. (2011): Measured and modeled rainfall interception in a lower montane forest, Ecuador. In: L.A. Bruijnzeel, F.N. Scatena & L.S. Hamilton (eds.): Tropical Montane Cloud Forests: Science for Conservation and Management ( ), Cambridge University Press, Cambridge, UK, 309-316.
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
The evaporative loss of intercepted water from the canopy constitutes an important element of the water budget of forests. Starting April 1998, incident precipitation (P), throughfall (TF), and stemflow (SF) were measured in five transects laid out in three small watersheds (~10 ha each) with lower montane rain forest at 1900?2200 m.a.s.l. in South Ecuador. Interception loss (I) was also modeled using the analytical model of Gash (1979). The storage capacity of the leaves and of
the trunks and branches, as well as the direct throughfall, and stemflow fractions were determined using conventional regression approaches. In addition, apparent total evaporation (ET) was determined from the water budget for the three watersheds. Mean annual P in the first 4 years ranged between 2363 and 2592 mm among the three watersheds. Average I derived from weekly measurements of P, TF, and SF ranged between 2.0 and 3.5 mm/day (i.e. 32?50% of P). Modeled
average I was similar to measured values at 2.1?3.4 mm/day (32?49% of P). We found that I constituted an important part of the average estimated watershed ET of 3.5?4.3 mm/day. The high evaporative losses are attributed to a combination of low rainfall intensities, the usual absence of fog, high canopy density, abundant
epiphytes, and advected energy from lower elevations.
Schwarz, M.T.; Oelmann, Y. & Wilcke, W. (2011): Stable N isotope composition of nitrate reflects N transformations during the passage of water through a montane rain forest in Ecuador. Biogeochemístry 102, 195-208.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s10533-010-9434-5
-
Abstract:
Abstract:
Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes
of NO3?N, NH4?N and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15?0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 during the passage of rain water through the
ecosystem and bulk d15N values in soil to detect N transformations. Depletion of 15N in NO3 and increased NO3
fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3
concentrations progressively decreased and were enriched in 15N but did not reach the d15N values of solid phase organic matter (d15N = 5.6?6.7%). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the d15N value of NO3 in litter leachate was smaller
(d15N = -1.58%) than in the other quarters (d15N = -9.38 ± SE 0.46%) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 between litter leachate and stream water was smaller in the wettest period than in the other periods
probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3-N from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3
gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.
-
Keywords: |
nitrate |
tropical montane forest |
denitrification |
nitrification |
15N natural abundance |
terrestrial N cycling |