Publications
- 1
Schütz, M.; Schütz, A.; Bendix, J. & Thies, B. (2024): Improving classification-based nowcasting of radiation fog with machine learning based on filtered and preprocessed temporal data. Quarterly Journal of the Royal Meteorological Society 150(759), 577--596.
Vorndran, M.; Schütz, A.; Bendix, J. & Thies, B. (2023-07-27). Pointwise Machine Learning Based Radiation Fog Nowcast with Station Data in Germany. Presented at 9th International Conference on Fog, Fog Collection, and Dew, Fort Collins, Colorado, USA.
Vorndran, M.; Schütz, A.; Bendix, J. & Thies, B. (2022-09-16). The effect of filtering and preprocessed temporal information on a classification based machine learning model for radiation fog nowcasting. Presented at AK Klima, Würzburg.
Vorndran, M.; Schütz, A.; Bendix, J. & Thies, B. (2021-11-05). Training and validation weaknesses in pointwise classification-based radiation fog forecast using machine learning algorithms . Presented at AK Klima, Passau.
Vorndran, M.; Schütz, A.; Bendix, J. & Thies, B. (2022): Current training and validation weaknesses in classification-based radiation fog nowcast using machine learning algorithms. Artificial Intelligence for the Earth Systems 1(2), e210006.
Pauli, E.; Andersen, H.; Bendix, J.; Cermak, J. & Egli, S. (2020): Determinants of fog and low stratus occurrence in continental central Europe – a quantitative satellite-based evaluation. Journal of Hydrology 591, 125451.
- 1