Download
Cite as:
Rehmus, A.; Bigalke, M.; Boy, J.; Valarezo, C. &amp; Wilcke, W. (2016): <b>Aluminum cycling in a tropical montane forest ecosystem in southern Ecuador</b>. <i>Geoderma</i> <b>288</b>, 196-203.

Resource Description

Title: Aluminum cycling in a tropical montane forest ecosystem in southern Ecuador
FOR816dw ID: 1540
Publication Date: 2016-11-17
License and Usage Rights: PAK 823-825 data user agreement. (www.tropicalmountainforest.org/dataagreementp3.do)
Resource Owner(s):
Individual: Agnes Rehmus
Contact:
Individual: Moritz Bigalke
Contact:
Individual: Jens Boy
Contact:
Individual: Carlos Valarezo
Contact:
Individual: Wolfgang Wilcke
Contact:
Abstract:
Growth limitation induced by Al toxicity is believed to commonly occur in tropical forests, although a direct proof is frequently lacking. To test for the general assumption of Al toxicity, Al, Ca, and Mg concentrations in precipitation, throughfall, stemflow, organic layer leachate, mineral soil solutions, stream water, and the leaves of 17 native tree species were analyzed. We calculated Al fluxes and modeled Al speciation in the litter leachate and mineral soil solutions. We assessed potential Al toxicity based on soil base saturation, Al concentrations, Ca:Al and Mg:Al molar ratios and Al speciation in soil solution as well as Al concentrations and Ca:Al andMg:Al molar ratios in tree leaves. High Al fluxes in litterfall (8.77±1.3 to 14.2±1.9 kg ha?1 yr?1, mean ± SE) indicated a high Al circulation through the ecosystem. The fraction of exchangeable and<br/> potentially plant-available Al in mineral soils was high, being a likely reason for a low root length density in<br/> the mineral soil. However, Al concentrations in all solutions were consistently below critical values and<br/> Ca:Al molar and the Ca2+:Alinorganic molar ratios in the organic layer leachate and soil solutions were above 1, the suggested threshold for Al toxicity. Except for two Al-accumulating and one non-accumulating tree species, the Ca:Al molar ratios in tree leaves were above the Al toxicity threshold of 12.5. Our results demonstrate high Al cycling through the vegetation partly because of the presence of some Al accumulator plants. However, there was little indication of an Al toxicity risk in soil and of acute Al toxicity in plants likely reflecting that tree species are well adapted to the environmental conditions at our study site and thus hardly prone to Al toxicity.
Keywords:
| aluminum toxicity | tropical forest ecosystems | aluminum fluxes | aluminum speciation | molar Ca:Al ratios |
Literature type specific fields:
ARTICLE
Journal: Geoderma
Volume: 288
Page Range: 196-203
Publisher: Elsevier
Publication Place: Amsterdam
ISSN: 0016-7061
Metadata Provider:
Individual: Wolfgang Wilcke
Contact:
Online Distribution:
Download File: http://www.tropicalmountainforest.org/publications.do?citid=1540


Quick search

  • Publications:
  • Datasets:

rnse logo

Radar Network Ecuador - Peru