Publikationen
Es wurden 2 Publikationen gefunden
Peters, T.; Bräuning, A.; Münchow, J. & Richter, M. (2014): An ecological paradox: high species diversity and low position of the upper forest line in the Andean Depression. Ecology and Evolution ece.3.1078, 1-12.
-
log in to download
-
link
-
view metadata
-
DOI: DOI:10.1002/ece3.1078
-
Abstract:
Abstract:
Systematic investigations of the upper forest line (UFL) primarily concentrate on mid and high latitudes of the Northern Hemisphere, whereas studies of Neotropical UFLs are still fragmentary. This article outlines the extraordinary high tree diversity at the UFL within the Andean Depression and unravels the links between the comparatively low position of the local UFL, high tree-species diversity, and climate. On the basis of Gentry?s rapid inventory methodology for the tropics, vegetation sampling was conducted at 12 UFL sites, and local climate (temperature, wind, precipitation, and soil moisture) was investigated at six sites. Monotypic forests dominated by Polylepis were only found at the higher located margins of the Andean Depression while the lower situated core areas were characterized by a species-rich forest, which lacked the elsewhere dominant tree-species Polylepis. In total, a remarkably high tree-species number of 255 tree species of 40 different plant families was found. Beta-diversity was also high with more than two complete species turnovers. A non-linear relationship between the floristic similarity of the investigated study sites and elevation was detected. Temperatures at the investigated study sites clearly exceeded 5.5°C, the postulated threshold value for the upper tree growth limit in the tropics. Instead, quasi-permanent trade winds, high precipitation amounts, and high soil water contents affect the local position of the UFL in a negative way. Interestingly, most of the above-mentioned factors are also contributing to the high species richness. The result is a combination of a clearly marked upper forest line depression combined with an extraordinary forest line complexity, which was an almost unknown paradox.
-
Keywords: |
climate |
air temperature |
Andes |
Biodiversity |
upper forest line |
andean depression |
Brunschön, C. & Behling, H. (2010): Reconstruction and visualization of upper forest line and vegetation changes in the Andean depression region of southeastern Ecuador since the last glacial maximum ? A multi-site synthesis. Review of Palaeobotany and Palynology -, 14 p..
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.revpalbo.2010.10.005
-
Abstract:
Abstract:
Based on 5 pollen records from locations between ca. 2700 and 3300 masl in the Podocarpus National Park (PNP) area (ca. 4° S and 79° W) within the Andean depression region in southern Ecuador, we reconstructed and visualized upper forest line (UFL) dynamics and past vegetation changes since the last glacial maximum (LGM). Estimates of altitudinal ranges of past UFL shifts in the study area allowed reconstructing past changes of forest and páramo expansion in the study region. During the LGM, the UFL position in the PNP area was at least ca. 700 m lower in the northernmost part and ca. 250 m further south compared to today. Glaciers covered the central PNP at this time, while deglaciation completed with the beginning of the Holocene. Throughout the recorded time UFL shifts and vegetation changes in the study area showed considerable local differences. This can be explained by locally differing vegetation compositions and climatic conditions, but especially during early to late Holocene times also by human disturbances. Only during the earliest Holocene and mid-Holocene the UFL in the central and southern PNP areas reached slightly higher elevations up to 200 m above the present position. The UFL in the PNP area shifted altitudinally over a shorter interval compared to other sites outside the depression. This difference may be caused by the study regions relatively low mountain elevations, wet climatic conditions, different and diverse vegetation pattern as well as by the corresponding vegetation response to climatic changes. The high complexity and heterogeneity of Andean habitats are assumed to be responsible for the variety in altitudinal distribution and compositional changes of vegetation. In the PNP area and the Andean depression region temperature seems to be less important for the UFL and vegetation changes than in other regions of the northern Andes. Instead we assume that other drivers, e.g. precipitation and wind, may be much more important for the developments in our study region.
-
Keywords: |
Ecuador |
Paramo |
upper forest line |
late quaternary |
mountain rainforest |
andean depression |