Abstract:
The forests of South Ecuador have high conservation value because they are highly threatened, but also possess high diversity and endemism levels. However, as the process of conservation is inherently spatial, the little available information about the factors that promote vulnerability of these forests as well as the spatial distribution of the conservation targets have produced some conservation pitfalls. The main objective of this dissertation was to generate spatial information about the threats and biological values occurring in this region to prioritize areas for conservation.
The second chapter analyzes the deforestation and fragmentation patterns in the region since the 1970s using aerial photographs and satellite images to identify areas with remaining forest, fronts of deforestation, annual deforestation rates and the dynamics in the composition and configuration of the landscape of South Ecuador. We recorded annual deforestation rates of 0.75% (1976 – 1989) and 2.86% (1989 – 2008) for two consecutive survey periods. Also, we found that South Ecuador is experiencing an ongoing fragmentation process due to an increase in the number of patches, a decrease in mean patch size and an increase in the isolation of forest fragments. This study also contributes to a better understanding of forest change dynamics in the tropics. We found that substantial portions of natural forests are being degraded or converted into pastures and that main fronts of deforestation are located in the lowest areas in the premontane evergreen forest.
The third chapter describes the temporal and spatial patterns of human pressure, as it is one of the main factors that influence the effectiveness of conservation strategies. At local scale, we adapted at local scale the Human Footprint Index (HF) developed by Sanderson et al. (2002), to evaluate spatial changes in HF during a 26 year period at both landscape and ecosystem levels. This information allowed us to identify “hotspots of change” and the wildest areas remaining in order to evaluate how different human proxies contribute to HF and to demonstrate how effective the most important protected areas have been in reducing human pressure inside and outside their boundaries. The findings show a noticeable
4
increase in human pressure levels in South Ecuador and a progressive reduction in the wildest areas. We also identified that the important “hotspots of changes” are located in the western region and the Rio Zamora river basin. The most impacted vegetation types were seasonally dry forest and shrubland. Here, population density is the human proxy with the highest contribution to the observed patterns. Finally, we found that Podocarpus National Park has been partially effective in reducing human pressure inside and outside its borders. HF levels have increased inside and outside the boundaries of the protected area, but the human pressure was always lower than that observed in the surrounding landscape.
The fourth chapter analyzes the patterns of alpha and beta diversity of endemic plant species to evaluate the congruence of both patterns and to identify areas with the highest diversity of endemic plants in order to prioritize areas for conservation. We found that hotspots of alpha diversity are concentrated along the Andes, but this diversity was only slightly congruent with beta diversity patterns of endemic plants mostly concentrated in the western and eastern escarpments of the Andes, and in the Coastal and Amazon cordilleras. We also found that approximately 40% of the areas with the highest alpha and beta diversities have already disappeared due to deforestation and that only 30% is under protection in Ecuador. Thus, we propose 12 potential areas with a high priority of conservation mostly located in South Ecuador to improve the representativeness and complementarity of the current reserve network.
Finally, the fifth chapter synthesizes the principal findings of this thesis highlighting the implications for conservation and suggesting potential areas to be preserved based on human pressure levels, remaining forest and alpha and beta diversity patterns of endemic plants.