Abstract:
This study addresses transpiration in a tropical evergreen mountain forest in the Ecuadorian
Andes from the leaf to the stand level, with emphasis on nocturnal plant-water relations. The
stand level: Evapotranspiration (ET) measured over 12 months with the Eddy-Covariance
(ECov) technique proved as the major share (79%) of water received from precipitation. Irre-
spective of the humid climate, the vegetation transpired day and night. On average, 15.3%
of the total daily ET were due to nocturnal transpiration. Short spells of drought increased
daily ET, mainly by enhanced nighttime transpiration. Following leaf transpiration rather
than air temperature and atmospheric water vapor deficit, ET showed its maximum already
in the morning hours. The tree level: Due to the humid climate, the total water consumption
of trees was generally low. Nevertheless, xylem sap flux measurements separated the
investigated tree species into a group showing relatively high and another one with low sap
flux rates. The leaf level: Transpiration rates of Tapirira guianensis, a member of the high-
flux-rate group, were more than twice those of Ocotea aciphylla, a representative of the
group showing low sap flux rates. Representatives of the Tapirira group operated at a rela-
tively high leaf water potential but with a considerable diurnal amplitude, while the leaves of
the Ocotea group showed low water potential and small diurnal fluctuations. Overall, the
Tapirira group performed anisohydrically and the Ocotea group isohydrically. Grouping of
the tree species by their water relations complied with the extents of the diurnal stem circum-
ference fluctuations. Nighttime transpiration and hydrological type: In contrast to the isohy-
drically performing trees of the Ocotea group, the anisohydric trees showed considerable
water vapour pressure deficit (VPD)-dependent nocturnal transpiration. Therefore, we con-
clude that nighttime ET at the forest level is mainly sourced by the tree species with aniso-
hydric performance.