Abstract:
Mycorrhizas of vascular plants and mycorrhiza-like associations of liverworts and hornworts are integral parts of terrestrial ecosystems, but have rarely been studied in tropical mountain rain forests. The tropical mountain rain forest area of the Reserva Biológica San Francisco in South Ecuador situated on the eastern slope of the Cordillera El Consuelo is exceptionally rich in tree species, ericads and orchids, but also in liverworts. Previous light and electron microscopical studies revealed that tree roots are well colonized by structurally diverse Glomeromycota, and that epiphytic, pleurothallid orchids form mycorrhizas with members of the Tulasnellales and the Sebacinales (Basidiomycota). Sebacinales also occurred in mycorrhizas of hemiepiphytic ericads and Tulasnellas were found in liverworts belonging to the Aneuraceae. On the basis of these findings we hypothesized that symbiotic fungi with a broad host range created shared guilds or even fungal networks between different plant species and plant families. To test this hypothesis, molecular phylogenetic studies of the fungi associated with roots and thalli were carried out using sequences of the nuclear rDNA coding for the small subunit rRNA (nucSSU) of Glomeromycota and the large subunit rRNA (nucLSU) of Basidiomycota. Sequence analyses showed that Sebacinales and Tulasnellas were only shared within but not between ericads and orchids or between liverworts and orchids, respectively. Regarding arbuscular mycorrhiza forming trees, however, 18 out of 33 Glomus sequence types were shared by two to four tree species belonging to distinct families. Nearly all investigated trees shared one sequence type with another tree individual. Host range and potential shared guilds appeared to be restricted to the plant family level for Basidiomycota, but were covering diverse plant families in case of Glomeromycota. Given that the sequence types as defined here correspond to fungal species, our findings indicate potential fungal networks between trees.