Abstract:
The sloping mire landscape of the investigation area, in the southern Andes of Ecuador, is dominated by stagnic soils with thick organic layers. The recursive partitioning algorithm Random Forest was used to predict the spatial water stagnation pattern and the thickness of the organic layer from terrain attributes. Terrain smoothing from 10 to 30m raster resolution was applied in order to obtain the best possible model. For the same purpose, several model tuning parameters were tested and a prepredictor selection with the R-package Boruta was applied. Model versions were evaluated and compared by 100 repetitions of the calculation of the residual mean square error of a five-fold cross-validation. Position specific density functions of the predicted soil parameters were then used to display prediction uncertainty. Prepredictor selection and tuning of the Random Forest algorithm in some cases resulted in an improved model performance.We therefore recommend testing prepredictor selection and tuning to make sure that
the best possible model is chosen.This needs particular emphasis in complex tropical mountain soil-landscapes which provide a real challenge to any soil mapping approach but where Random Forest has proven to be successful due to the testing of model tuning and prepredictor selection.