Publications
Found 866 publication(s)
- of type
Raffelsbauer, V.; Pucha-Cofrep, F.; Strobl, S.; Knüsting, J.; Schorsch, M.; Trachte, K.; Scheibe, R.; Bräuning, A.; Windhorst, D.; Bendix, J.; Silva, B. & Beck, E. (2023): Trees with anisohydric behavior as main drivers of nocturnal evapotranspiration in a tropical mountain rainforest. PloS ONE 18(3), 1-1.
-
download
-
link
-
view metadata
-
DOI: 10.1371/journal.pone.0282397
-
Abstract:
Abstract:
This study addresses transpiration in a tropical evergreen mountain forest in the Ecuadorian
Andes from the leaf to the stand level, with emphasis on nocturnal plant-water relations. The
stand level: Evapotranspiration (ET) measured over 12 months with the Eddy-Covariance
(ECov) technique proved as the major share (79%) of water received from precipitation. Irre-
spective of the humid climate, the vegetation transpired day and night. On average, 15.3%
of the total daily ET were due to nocturnal transpiration. Short spells of drought increased
daily ET, mainly by enhanced nighttime transpiration. Following leaf transpiration rather
than air temperature and atmospheric water vapor deficit, ET showed its maximum already
in the morning hours. The tree level: Due to the humid climate, the total water consumption
of trees was generally low. Nevertheless, xylem sap flux measurements separated the
investigated tree species into a group showing relatively high and another one with low sap
flux rates. The leaf level: Transpiration rates of Tapirira guianensis, a member of the high-
flux-rate group, were more than twice those of Ocotea aciphylla, a representative of the
group showing low sap flux rates. Representatives of the Tapirira group operated at a rela-
tively high leaf water potential but with a considerable diurnal amplitude, while the leaves of
the Ocotea group showed low water potential and small diurnal fluctuations. Overall, the
Tapirira group performed anisohydrically and the Ocotea group isohydrically. Grouping of
the tree species by their water relations complied with the extents of the diurnal stem circum-
ference fluctuations. Nighttime transpiration and hydrological type: In contrast to the isohy-
drically performing trees of the Ocotea group, the anisohydric trees showed considerable
water vapour pressure deficit (VPD)-dependent nocturnal transpiration. Therefore, we con-
clude that nighttime ET at the forest level is mainly sourced by the tree species with aniso-
hydric performance.
-
Keywords: |
dendrometer |
Evapotranspiration |
Sap flux |
Eddy covariance |
Knoke, T. (27.7.2022). Modelling the Social Acceptability of Sustainable Intensification. Presented at Eventos UTPL, UTPL, Loja, Conversatorio.
Knoke, T.; Gosling, E. & Reith, E. (2022): Understanding and modelling the ambiguous impact of off-farm income on tropical deforestation. Journal of Land Use Science 17, 1-20.
-
download
-
link
-
view metadata
-
DOI: 10.1080/1747423X.2022.2146220
-
Abstract:
Abstract:
Few land-allocation models consider the impact of off-farm income on
tropical deforestation. We provide a concept to integrate off-farm income
in a mechanistic multiple-objective land-allocation model, while distinguishing
between farms with and without re-allocation of on-farm labor
to obtain off-farm income. On farms with re-allocation of labor we found
that off-farm income reduced farmers’ financial dependency on deforestation-
related agricultural income leading to less tropical deforestation.
The influence of off-farm income covered two aspects: availability of
additional income and re-allocation of on-farm labor to off-farm activities.
The labor effect tended to reduce deforestation slightly more than the
income effect. On farms without re-allocation of on-farm labor we showed
how farmers can use off-farm income to purchase additional labor to
accelerate deforestation. Our study highlights the importance of considering
off-farm income in land-use models to better understand, model
and possibly curb tropical deforestation.
-
Keywords: |
land use change |
Husmann, K.; von Groß, V.; Bödeker, K.; Fuchs, J.; Paul, C. & Knoke, T. (2022): optimLanduse: A package for multiobjective land-cover composition optimization under uncertainty. Methods in Ecology and Evolution Online, 1-10.
-
download
-
link
-
view metadata
-
DOI: 10.1111/2041-210X.14000
-
Abstract:
Abstract:
1. How to simultaneously combat biodiversity loss and maintain ecosystem functioning
while improving human welfare remains an open question. Optimization
approaches have proven helpful in revealing the trade-offs
between multiple
functions and goals provided by land-cover
configurations. The R package optim-
Landuse provides tools for easy and systematic applications of the robust multiobjective
land-cover
composition optimization approach of Knoke et al. (2016).
2. The package includes tools to determine the land-cover
composition that best
balances the multiple functions a landscape can provide, and tools for understanding
and visualizing the reasoning behind these compromises. A tutorial
based on a published dataset guides users through the application and highlights
possible use-cases.
3. Illustrating the consequences of alternative ecosystem functions on the theoretically
optimal landscape composition provides easily interpretable information
for landscape modelling and decision-making.
4. The package opens the approach of Knoke et al. (2016) to the community of
landscape modellers and planners and provides opportunities for straightforward
systematic or batch applications.
-
Keywords: |
models of land-use/land-cover change |
multicriteria assessment |
robust optimization |
DFG FOR2730 - RESPECT (2022): Tabebuia Bulletin, Issue 9. Laboratory for Climatology and Remote Sensing (LCRS), University of Marburg, Marburg, Germany.
-
download
-
link
-
view metadata
-
DOI: 10.5678/9xq8-jy86
-
Abstract:
Abstract:
Despite the ongoing COVID-19 pandemic RESPECT's researchers and their counterparts already established climate-hydro stations, selected forests' and replacements systems' plots in the dry forest. First research results of the second phase of the Research Unit are presented in this issue of the Tabebuia Bulletin. These comprise model testing and applications, further insights into carbon and nitrogen cycles, linkages between above– and belowground traits, the use of stable isotopes, and studies on biotic interactions. News from the data warehouse, as well as research results from infrastructure providers, counterparts at the UTPL and the UC, news from Ecuador, new people and staff members as well as a report about our successful outreach activity in form of an open day at Laipuna rounds off this issue.
-
Keywords: |
Newsletter |
Tabebuia Bulletins |
Zuidema, P.A.; Babst, F.; Groenendijk, P.; Trouet, V.; Abiyu, A.; Acuana-Soto, R.; Adenesky-Filho, E.; Alfaro-Sanchez, R.; Aragao, J.R.V.; Assis-Pereira, G.; Bai, X.; Barbosa, A.C.; Battipaglia, G.; Beeckman, H.; Botosso, P.C.; Bradley, T.; Bräuning, A.; Brienen, R.; Buckley, B.M.; Camarero, J.J.; Carvalho, A.; Ceccantini, G.; Centeno-Erguera, L.R.; Cerano-Paredes, J.; Chavez-Duran, A.A.; Cintra, B.B.L.; Cleaveland, M.K.; Couralet, C.; Arrigo, R.D.; Valle, J.I.; Dünisch, O.; Enquist, B.J.; Esemann-Quadros, K.; Eshetu, Z.; Fan, Z.; Ferrero, M.E.; Fichtler, E.; Fontana, C.; Francisco, K.S.; Gebrekirstos, A.; Gloor, E.; Granato-Souza, D.; Haneca, K.; Harley, G.L.; Heinrich, I.; Helle, G.; Inga, J.G.; Islam, M.; Jiang, Y.; Kaib, M.; Khamisi, Z.H.; Koprowski, M.; Kruijt, B.; Layme, E.; Leemans, R.; Leffler, A.J.; Lisi, C.S.; Loader, N.J.; Locosselli, G.M.; Lopez, L.; Lopez-Hernandez, M.I.; Lousada, J.L.P.C.; Mendivelso, H.A.; Mokria, M.; Montoia, V.R.; Moors, E.; Nabais, C.; Ngoma, J.; de Junior, F.C.N.; Oliveira, J.M.; Olmedo, G.M.; Pagotto, M.A.; Panthi, S.; Perez-De-Lis, G.; Pucha-Cofrep, D.; Pumijumnong, N.; Rahman, M.; Ramírez Correa, J.A.; Requena-Rojas, E.J.; de Ribeiro, A.S.; Robertson, I.; Roig, F.A.; Rubio-Camacho, E.A.; Sass-Klaassen, U.; Schöngart, J.; Sheppard, P.R.; Slotta, F.; Speer, J.H.; Therrell, M.D.; Toirambe, B.; Tomazello-Filho, M.; Torbenson, M.C.A.; Touchan, R.; Venegas-Gonzalez, A.; Villalba, R.; Villanueva-Diaz, J.; Vinya, R.; Vlam, M.; Wils, T. & Zhou, Z. (2022): Tropical tree growth driven by dry-season climate variability. Nature Geoscience 15, pages 269–276.
Pierick, K.; Leuschner, C.; Link, R.; Baez, S.; Velescu, A.; Wilcke, W. & Homeier, J. (2024): Above-and belowground strategies of tropical montane tree species are coordinated and driven by small-scale nitrogen availability. Functional Ecology 38, 1364-1377.
-
download
-
link
-
view metadata
-
DOI: 10.1111/1365-2435.14554
-
Abstract:
Abstract:
1. The question whether the strategies of above-and belowground plant organs
are coordinated as predicted by the plant economics spectrum theory is still
under debate. We aim to determine the leading dimensions of tree trait variation
for above-and belowground functional traits, and test whether they represent
spectra of adaptation along a soil fertility gradient in tropical Andean
forests.
2. We measured leaf, stem and fine root functional traits, and individual-level
soil nutrient availability for 433 trees from 52 species at three elevations between
1000 and 3000 m a.s.l.
3. We found close coordination between above– and belowground functional traits
related to the trade-off between resource acquisition and conservation, whereas
root diameter and specific root length formed an independent axis of covarying
traits. The position of a tree species along the acquisition–conservation axis of
the trait space was closely associated with local soil nitrogen, but not phosphorus,
availability.
4. Our results imply that above-and belowground plant functional traits determine
at which edaphic microhabitats coexisting tree species can grow, which is potentially
crucial for understanding community assembly in species-rich
tropical montane forests.
-
Keywords: |
Ecuador |
tropical montane forest |
fine roots |
intraspecific variability |
functional traits |
Pierick, K.; Link, R.; Leuschner, C. & Homeier, J. (2022): Elevational trends of tree fine root traits in species-rich tropical Andean forests. Oikos 2023, e08975.
-
download
-
link
-
view metadata
-
DOI: 10.1111/oik.08975
-
Abstract:
Abstract:
With increasing elevation, trees in tropical montane forests have to invest larger frac-tions of their resources into their fine roots in order to compensate for increasingly unfavorable soil conditions. It is unclear how elevation and related edaphic changes influence the variability in tree fine root traits and belowground functional diversity. We measured six fine root traits related to resource acquisition on absorptive fine roots of 288 trees from 145 species along an elevational gradient from 1000 m to 3000 m a.s.l. in tropical montane forests of the Ecuadorian Andes. We analyzed trait relation-ships with elevation and soil nutrient availability, and tested whether root functional diversity varied along these gradients. Fine roots at higher elevations and at more nutrient-poor sites were thicker, had higher tissue densities, and lower specific root length and nutrient concentrations than at lower elevations. These trends were diluted by the coexistence of tree species with a broad range of different root traits within communities particularly towards lower elevations, where root functional diversity was significantly higher. We conclude that nutrient limitation and potentially further adverse conditions at higher elevations are strong environmental filters that lead to trait convergence towards a conservative resource use strategy, whereas different trait syndromes are equally successful at lower elevations.
-
Keywords: |
Ecuador |
tropical montane forest |
fine roots |
elevational gradient |
functional traits |
Báez, S.; Fadrique, B.; Feeley, K. & Homeier, J. (2022): Changes in tree functional composition across topographic gradients and through time in a tropical montane forest. PLOS ONE 17(4), e0263508.
-
download
-
link
-
view metadata
-
DOI: 10.1371/journal. pone.0263508
-
Abstract:
Abstract:
Understanding variation in tree functional traits along topographic gradients and through time provides insights into the processes that will shape community composition and determine ecosystem functioning. In montane environments, complex topography is known to affect forest structure and composition, yet its role in determining trait composition, indices on community climatic tolerances, and responses to changing environmental conditions has not been fully explored. This study investigates how functional trait composition (characterized as community-weighted moments) and community climatic indices vary for the tree community as a whole and for its separate demographic components (i.e., dying, surviving, recruiting trees) over eight years in a topographically complex tropical Andean forest in southern Ecuador. We identified a strong influence of topography on functional composition and on species’ climatic optima, such that communities at lower topographic positions were dominated by acquisitive species adapted to both warmer and wetter conditions compared to communities at upper topographic positions which were dominated by conservative cold adapted species, possibly due to differences in soil conditions and hydrology. Forest functional and climatic composition remained stable through time; and we found limited evidence for trait-based responses to environmental change among demographic groups. Our findings confirm that fine-scale environmental conditions are a critical factor structuring plant communities in tropical forests, and suggest that slow environmental warming and community-based processes may promote short-term community functional stability. This study highlights the need to explore how diverse aspects of community trait composition vary in tropical montane forests, and to further investigate thresholds of forest response to environmental change.
-
Keywords: |
Ecuador |
forest dynamics |
environmental change |
plant functional traits |
tropical montane forests (TMF) |
topography |
Knoke, T.; Gosling, E.; Reith, E.; Gerique, A.; Pohle, P.; Valle-Carrión, L.A.; Ochoa Moreno, S.; Castro, L.M.; Calvas, B.; Hildebrandt, P.; Döllerer, M.; Bastit, F. & Paul, C. (2022): Confronting sustainable intensification with uncertainty and extreme values on smallholder tropical farms. Sustainability Science 0, 1-18.
-
link
-
view metadata
-
DOI: 10.1007/s11625-022-01133-y
-
Abstract:
Abstract:
Sustainable intensification of agricultural lands might reconcile the conservation of tropical forest with food production,but in-depth assessments considering uncertainty and extreme values are missing. Uncertainty prohibits mapping probabilities to potential future states or ranking these states in terms of their likelihood. This in turn hampers the assessment of possible decision outcomes. Here, we use simulations to investigate how uncertainty may influence the social acceptability of alternative land-use strategies to halt tropical deforestation (including sustainable intensification), based on indicators representing farmer satisfaction. The results show how extreme values (worst values) for indicators of farmer satisfaction
may undermine the adoption of sustainable intensification. We demonstrate that a pure forest conservation strategy leads to lower food production, but outperforms a sustainable intensification strategy that maintains food security. Pure forest conservation performed better, i.e., could secure higher farmer satisfaction, than sustainable intensification across a range of indicator groups. This suggests strong barriers to achieving sustainable intensification. Using agricultural subsidies breaks the dominance of pure forest conservation by enhancing the economic returns of sustainable intensification. We discuss the
importance of access to labor and farmers’ preferences for the use of already cleared lands, which achieved the worst values under sustainable intensification and conclude that any assessment of land-use strategies requires careful consideration of uncertainty and extreme values.
-
Keywords: |
deforestation |
land use change |
sustainable land use |
agriculture |
land use modeling |
intensification |
Weigand, A.; Homeier, J.; Lehnert, M. & Kessler, M. (2022): Influence of increasing nutrient availability on fern and lycophyte diversity. American Fern Journal 112(1), 17-35.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1640/0002-8444-112.1.17
-
Abstract:
Abstract:
Increased nutrient supply can have drastic effects on natural ecosystems, especially in
naturally nutrient-poor ones such as most tropical rainforests. Many studies have focused on the reaction of trees to fertilization, but little is known about herbaceous plants. Ferns are a particularly common group in tropical forests, spanning all vegetation types and zones. Here, we assess how seven years of moderate addition of nitrogen (N), phosphorus (P), and N+P along an elevational gradient (1000–3000 m) have impacted richness and composition of fern and lycophyte assemblages in tropical montane rain forests growing on naturally nutrient deficient soils in the Ecuadorian Andes. We found that fertilization does not affect overall species richness, but that there were strong differences in species abundances (~60% of species), both negative and positive, that were apparently related to the systematic affiliations and ecological properties of the affected species. These diverse responses of ferns to fertilization provide insight into the sensitivity and complexity of the relationships of nutrient availability and community composition in tropical forests.
-
Keywords: |
NUMEX |
diversity |
Andes |
tropical montane forest |
elevational gradient |
experimental nutrient addition |
fern |
Ostertag, R.; Restrepo, C.; Dalling, J.W.; Martin, P.H.; Abiem, I.; Aiba, S.; Alvarez-Dávila, E.; Aragón, R.; Ataroff, M.; Chapman, H.; Cueva, A.; Fadrique, B.; Fernández, R.D.; González, G.; Gotsch, S.G.; Häger, A.; Homeier, J.; Iñiguez-Armijos, C.; Llambi, L.D.; Moore, G.W.; Næsborg, R.R.; Poma López, L.N.; Vieira Pompeu, P.; Powell, J.R.; Ramírez Correa, J.A.; Scharnagl, K.; Tobón, C. & Williams, C.B. (2021): Litter decomposition rates across tropical montane and lowland forests are controlled foremost by climate. Biotropica 54(2), 309-326.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/btp.13044
-
Abstract:
Abstract:
The “hierarchy of factors” hypothesis states that decomposition rates are controlled primarily by climatic, followed by biological and soil variables. Tropical montane forests (TMF) are globally important ecosystems, yet there have been limited efforts to provide a biome-scale characterization of litter decomposition. We designed a common litter decomposition experiment replicated in 23 tropical montane sites across the Americas, Asia, and Africa and combined these results with a previous study of 23 sites in tropical lowland forests (TLF). Specifically, we investigated (1) spatial heterogeneity
in decomposition, (2) the relative importance of biological factors that affect leaf and wood decomposition in TMF, and (3) the role of climate in determining leaf litter decomposition rates within and across the TMF and TLF biomes. Litterbags of two mesh sizes containing Laurus nobilis leaves or birchwood popsicle sticks were spatially dispersed and incubated in TMF sites, for 3 and 7 months on the soil surface and at 10–15 cm depth. The within-site
replication demonstrated spatial variability in mass loss. Within TMF, litter type was the predominant biological factor influencing decomposition (leaves > wood), with mesh and burial effects playing a minor role.
When comparing across TMF and TLF, climate was the predominant control over decomposition,but the Yasso07 global model (based on mean annual temperature and precipitation) only modestly predicted decomposition rate. Differences in controlling factors between biomes suggest that TMF, with their high rates of carbon storage, must be explicitly considered when developing theory and models to elucidate carbon cycling rates in the tropics.
-
Keywords: |
climate |
decomposition |
tropical montane forests (TMF) |
Muñoz, P.; Orellana-Alvear, J.; Bendix, J.; Feyen, J. & Celleri, R. (2021): Flood Early Warning Systems Using Machine Learning Techniques: The Case of the Tomebamba Catchment at the Southern Andes of Ecuador. Hydrology 8(4), -.
Wallis, C.; Tiede, Y.; Beck, E.; Boehning-Gaese, K.; Brandl, R.; Donoso, D.A.; Espinosa, C.; Fries, A.; Homeier, J.; Inclan, D.; Leuschner, C.; Maraun, M.; Mikolajewski, K.; Neuschulz, E.L.; Scheu, S.; Schleuning, M.; Suárez, J.P.; Tinoco, B.A.; Farwig, N. & Bendix, J. (2021): Biodiversity and ecosystem functions depend on environmental conditions and resources rather than the geodiversity of a tropical biodiversity hotspot. Scientific Reports 11(1), 24530.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1038/s41598-021-03488-1
-
Abstract:
Abstract:
Biodiversity and ecosystem functions are highly threatened by global change. It has been proposed that geodiversity can be used as an easy-to-measure surrogate of biodiversity to guide conservation management. However, so far, there is mixed evidence to what extent geodiversity can predict biodiversity and ecosystem functions at the regional scale relevant for conservation planning. Here, we analyse how geodiversity computed as a compound index is suited to predict the diversity of four taxa and associated ecosystem functions in a tropical mountain hotspot of biodiversity and compare the results with the predictive power of environmental conditions and resources (climate, habitat, soil). We show that combinations of these environmental variables better explain species diversity and ecosystem functions than a geodiversity index and identified climate variables as more important predictors than habitat and soil variables, although the best predictors differ between taxa and functions. We conclude that a compound geodiversity index cannot be used as a single surrogate predictor for species diversity and ecosystem functions in tropical mountain rain forest ecosystems and is thus little suited to facilitate conservation management at the regional scale. Instead, both the selection and the combination of environmental variables are essential to guide conservation efforts to safeguard biodiversity and ecosystem functions.
-
Keywords: |
Biodiversity |
geodiversity |
Acosta Rojas, D.C.; Barczyk, M.; Espinosa, C.I.; Gusman, J.; Peña, J.; Neuschulz, E.; Schleuning, M. & Homeier, J. 2021: Field guide of animal-dispersed plants: fruits and seeds in and around Podocarpus National Park.: 1 16 (INABIO, Quito).
-
download
-
link
-
view metadata
-
DOI: 10.5678/vnkb-t219
-
Abstract:
Abstract:
Plant communities in tropical mountains host a high diversity of species’ morphological traits. Many tropical plant species exhibit a wide range of colored fleshy fruits mainly dispersed by animals. Fruits display a variety of shapes including, for instance, capsules with arillate seeds, drupes with fibrous pulp, and juicy berries. These fruits can enclose just one or many tiny seeds which are dispersed by animals. In the tropical mountains of the southeast of Ecuador, seed size can vary from less than 1 mm (e.g., Miconia sp.) to large seeds with a size of almost 10 cm.
Despite the high diversity of fleshy-fruited species and the relevance in plant regeneration, there is very little information that facilitates the identification of even the most common fruits and seeds in tropical mountains. The pronounced endemism in the Andes and the constant description of new plant species increase the necessity to foster local publications including these unique species. This project aims to produce an identification guide as a scientific tool to ease the taxonomic determination of seeds dispersed by animals and to speed up the identification process in the mountain forests of the southeast of Ecuador. This field guide will be a source of consultation for future research units at the San Francisco Scientific Station, and will also contribute to public outreach.
-
Keywords: |
tree seeds |
mutualistic interactions |
fruit functional traits |
fleshy-fruited species |
Just, S. & University of Marburg (2021): Influence of abiotic and biotic factors on herbivory along an elevational gradient in a tropical montane rainforest Philipps-Universität Marburg, bachelor thesis
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
Herbivory is an important plant-animal interaction which impacts ecosystems in various ways, e.g., influencing nutrient cycles, plant productivity, and community composition. Herbivory therefore plays a crucial role in maintaining ecosystem functions of tropical rainforests. As plants are negatively impacted by herbivory, they have developed antiherbivore defense strategies, which reduce herbivory levels. Additionally, herbivory is known to decrease under harsh climatic conditions, because herbivorous arthropods are impacted by temperature and precipitation. However, it has yet to be clarified whether herbivory is primarily impacted directly by climatic (i.e., abiotic) factors or indirectly through plant traits (i.e., biotic factors). In this study we investigated the influence of temperature, precipitation, and various leaf traits, like specific leaf area (SLA) and nutrient concentration, on herbivory along an elevational gradient from 1000 to 3000 m a.s.l. in a tropical rainforest in South Ecuador. We found lower herbivory levels at higher elevation in response to decreased temperature and SLA. Moreover, herbivory levels decreased with precipitation. Hence, we demonstrated that climate has a significant direct and indirect impact on tropical ecosystems by influencing herbivory.
-
Keywords: |
elevation |
neotropical mountain rain forest |
herbivory |
Fiedler, K. & Brehm, G. (2021): Aposematic Coloration of Moths Decreases Strongly along an Elevational Gradient in the Andes. Insects 12(10), -.
Cueva, A.; Manchego, C.; Bastidas, C. & Curto, M. (2021): Development and characterization of microsatellite markers for two subspecies of Handroanthus chrysanthus. Rodriguésia 72(e00722020), 6.
-
log in to download
-
log in to download
-
link
-
view metadata
-
DOI: 10.1590/2175-7860202172088
-
Abstract:
Abstract:
An understanding of the genetic diversity and structure of plant species is essential in order to comprehend the degree of biodiversity loss and to develop successful restoration programs. Handroanthus is an important genus that presents one of the most valuable timbers of South America. Handroanthus chrysanthus is an important species distributed in Central and South America. Microsatellite markers are not previously developed for this species. Ten microsatellites for Handroanthus chrysanthus developed using high-throughput sequencing are presented here. The usefulness of these microsatellite loci for the genetic analysis of subspecies H. chrysanthus subsp. chrysanthus (distributed in coastal dry forests) and subspecies H. chrysanthus subsp. meridionalis (distributed in premontane moist forests) is analyzed. At least eight polymorphic microsatellites are useful for each subspecies, seven of which can be used in both subspecies.
-
Keywords: |
Ecuador |
dry forest |
Handroanthus chrysanthus |
Guayacan |
microsatellites |
premontane forest |
subspecies |
Vollstaedt, M.; Albrecht, J.; Boehning-Gaese, K.; Hemp, C.; Howell, K.; Kettering, L.; Neu, A.; Neuschulz, E.; Quitian, M.; Santillan, V.; Töpfer, T.; Schleuning, M. & Fritz, S. (2020): Direct and plant-mediated effects of climate on bird diversity in tropical mountains. Ecology and Evolution 10(24), 14196-14208.
Dehling, D.; Bender, I.M.; Blendinger, P.; Boehning-Gaese, K.; Munoz, M.; Neuschulz, E.; Quitian, M.; Saavedra, F.; Santillan, V.; Schleuning, M. & stouffer, D. (2021): Specialists and generalists fulfil important and complementary functional roles in ecological processes. Functional Ecology 35(8), 1810-1821.
Velescu, A.; Homeier, J.; Bendix, J.; Valarezo, C. & Wilcke, W. (2021): Response of water-bound fluxes of potassium, calcium, magnesium and sodium to nutrient additions in an Ecuadorian tropical montane forest. Forest Ecology and Management 501(119661), 1-14.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.foreco.2021.119661
-
Abstract:
Abstract:
In the past two decades, the Amazon-exposed, tropical montane rain forests in south Ecuador experienced increasing deposition of reactive N mainly from Amazonian forest fires, episodic Ca and Mg inputs from Saharan dust, and a low but constant P deposition from unknown sources. To explore the response of this tropical, perhumid ecosystem to nutrient inputs, we established in 2007 a Nutrient Manipulation Experiment (NUMEX). Since 2008, we have applied 50 kg ha−1 year−1 of N as urea, 10 kg ha−1 year−1 of P as NaH2PO4·H2O, 50 kg ha−1 year−1 of N + 10 kg ha−1 year−1 of P and 10 kg ha−1 year−1 of Ca as CaCl2·H2O in a randomized block design at 2000 m a.s.l. in a natural forest of the south Ecuadorian Andes. Previous studies have shown that alkali and alkaline earth metals had beneficial effects on the functioning of N and P co-limited tropical forests occurring on acidic soils. Therefore, we determined the response of all major aqueous ecosystem fluxes of K, Ca, Mg and Na to nutrient amendments, to understand how increasing atmospheric deposition would affect their cycling in the future. Additions of N and P decreased K leaching from the organic layer and in the mineral soil, thus tightening K cycling. This suggests that increasing future N and P availability may result in K limitation in the long term. The leaching of Ca and Mg from the canopy increased in response to amendments of N and P and we observed an enhanced uptake of these nutrients also if Ca was amended alone. Although N was applied as urea, acidity of soil solutions and leaching of K, Ca, Mg and Na did not increase following separate N amendments. In spite of the acid soils and of its low cation-exchange competitivity, Na included in the P fertilizer was only partly leached from the organic layer. We suggest that it was probably required to cover an unmet Na demand of the soil fauna. Our results demonstrate the major role in the functioning of the tropical montane forests played by K, Ca and Mg as potential future growth-limiting elements and increasingly required nutrients in response to rising N and P availability, while they also support the importance of Na as a functional element in these ecosystems.
-
Keywords: |
Ecuador |
NUMEX |
nutrient manipulation |
tropical montane forest |
nutrient additions |
base cations |
Dantas De Paula, M.; Forrest, M.; Langan, L.; Bendix, J.; Homeier, J.; Velescu, A.; Wilcke, W. & Hickler, T. (2021): Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. New Phytologist -(-), -.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/nph.17600
-
Abstract:
Abstract:
Summary Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61–72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.
-
Keywords: |
mycorrhiza |
dynamic vegetation model |
nutrient cycling |
plant community assembly |
plant functional traits |
tropical montane forests (TMF) |
Weber, M.; Braumiller, P.; Stimm, B. & Hildebrandt, P. (2021): Zur Bedeutung der Waldnutzung für die lokale Bevölkerung in den Trockenwäldern Süd-Ecuadors. In: Felbermeier B, Stimm B, Seidl, R (eds.): Waldbau weltweit 2.0 - Festschrift anlässlich der Verabschiedung von Prof. Dr. Dr. Reinhard Mosandl (1 219), Zentrum Wald Forst Holz Weihenstephan, Hans-Carl-von-Carlowitz-Platz 1 85354 Freising, 149-162.
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
90% of the 1.2 billion people living with less than 1 USD/day, depend on the utilization of forests. The dry forests of the Tumbes-Piura-region at the coast of Southwest Ecuador are one of the 25 global hotspots of biodiversity with an immense number of endemic species. Nonetheless, they are endangered by anthropogenic impact. In this study we surveyed 89 households of five different districts to analyze the extent and importance of the different forest uses in the region. The results showed that forest utilization is practised by 97% of the households. With a share of 31% it contributes the 2nd highest amount to the mean total household income, only surpassed by livestock farming (36%). The most important use of the forests is silvopasture, which represents not only an important source of cash income, but also a substantial contribution to subsistence.
-
Keywords: |
silvopasture |
Tumbes-Piura-region |
socioeconomy |
forest income |
subsistence |
Seibold, S.; Rammer, W.; Hothorn, T.; Seidl, R.; Ulyshen, M.D.; Lorz, J.; Cadotte, M.W.; Lindenmayer, D.B.; Adhikari, Y.P.; Aragón, R.; Bae, S.; Baldrian, P.; Barimani Varandi, H.; Barlow, J.; Bässler, C.; Beauchene, J.; Berenguer, E.; Bergamin, R.S.; Birkemoe, T.; Boros, G.; Brandl, R.; Brustel, H.; Burton, P.J.; Cakpo-Tossou, Y.T.; Castro, J.; Cateau, E.; Cobb, T.P.; Farwig, N.; Fernández, R.D.; Firn, J.; Gan, K.S.; González, G.; Gossner, M.M.; Habel, J.C.; Hébert, C.; Heibl, C.; Heikkala, O.; Hemp, A.; Hemp, C.; Hjältén, J.; Hotes, S.; Kouki, J.; Lachat, T.; Liu, J.; Liu, Y.; Luo, Y.; Macandog, D.M.; Martina, P.E.; Mukul, S.A.; Nachin, B.; Nisbet, K.; O’Halloran, J.; Oxbrough, A.; Pandey, J.N.; Pavlíček, T.; Pawson, S.M.; Rakotondranary, J.S.; Ramanamanjato, J.; Rossi, L.; Schmidl, J.; Schulze, M.; Seaton, S.; Stone, M.J.; Stork, N.E.; Suran, B.; Sverdrup-Thygeson, A.; Thorn, S.; Thyagarajan, G.; Wardlaw, T.J.; Weisser, W.; Yoon, S.; Zhang, N. & Müller, J. (2021): The contribution of insects to global forest deadwood decomposition. Nature 597(7874), 77-81.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1038/s41586-021-03740-8
-
Abstract:
Abstract:
The amount of carbon stored in deadwood is equivalent to about 8per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2–5 with decomposer groups—such as microorganisms and insects—contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect—including the direct consumption by insects and indirect effects through interactions with microorganisms—insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9per cent and −0.1per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.93.2petagram of carbon per year released from deadwood globally, with 93per cent originating from tropical forests. Globally, the net effect of insects may account for 29per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
-
Keywords: |
Biodiversity |
Climate and Earth system modelling |
Ecosystem ecology |
Forest ecology |
Haug, I.; Setaro, S. & Suárez, J.P. (2021): Global AM fungi are dominating mycorrhizal communities in a tropical premontane dry forest in Laipuna, South Ecuador. Mycological Progress 20(6), 837-845.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s11557-021-01699-4
-
Abstract:
Abstract:
Tropical dry forests are an intricate ecosystem with special adaptations to periods of drought. Arbuscular mycorrhizal fungi (AMF) are essential for plant survival in all terrestrial ecosystems but might be of even greater importance in dry forests as plant growth is limited due to nutrient and water deficiency during the dry season. Tropical dry forests in Ecuador are highly endangered, but studies about AMF communities are scarce. We investigated the AMF community of a premontane semi-deciduous dry forest in South Ecuador during the dry season. We estimated AMF diversity, distribution, and composition of the study site based on operational taxonomic units (OTUs) and compared the results to those from the tropical montane rainforest and páramo in South Ecuador. OTU delimitation was based on part of the small ribosomal subunit obtained by cloning and Sanger sequencing. Nearly all OTUs were Glomeraceae. The four frequent OTUs were Glomus, and comparison with the MaarjAM database revealed these to be globally distributed with a wide range of ecological adaptations. Several OTUs are shared with virtual taxa from dry forests in Africa. Ordination analysis of AMF communities from the tropical dry and montane rainforests in South Ecuador revealed a unique AMF community in the dry forest with only few overlapping OTUs. Most OTUs that were found in both dry and rainforests and on the two continents were globally distributed Glomus.
-
Keywords: |
ecuador |
AMF community |
Tropical dry forest |
Sanger sequencing |
Limberger, O.; Homeier, J.; Farwig, N.; Pucha-Cofrep, F.; Fries, A.; Leuschner, C.; Trachte, K. & Bendix, J. (2021): Classification of Tree Functional Types in a Megadiverse Tropical Mountain Forest from Leaf Optical Metrics and Functional Traits for Two Related Ecosystem Functions. Forests 12(5), 649.
Homeier, J.; Seeler, T.; Pierick, K. & Leuschner, C. (2021): Leaf trait variation in species-rich tropical Andean forests. Scientific Reports 11, 9993.
-
download
-
link
-
view metadata
-
DOI: 10.1038/s41598-021-89190-8
-
Abstract:
Abstract:
Screening species-rich communities for the variation in functional raits along environmental gradients may help understanding the abiotic drivers of plant performance in a mechanistic way. We investigated tree leaf trait variation along an elevation gradient (1000–3000 m) in highly diverse neotropical montane forests to test the hypothesis that elevational trait change reflects a trend toward more conservative resource use strategies at higher elevations, with interspecific trait variation decreasing and trait integration increasing due to environmental filtering. Analysis of trait variance partitioning across the 52 tree species revealed for most traits a dominant influence of phylogeny, except for SLA, leaf thickness and foliar Ca, where elevation was most influential. The community-level means of SLA, foliar N and Ca, and foliar N/P ratio decreased with elevation, while leaf thickness and toughness increased. The contribution of intraspecific variation was substantial at the community level in most traits, yet smaller than the interspecific component. Both within-species and between-species trait variation did not change systematically with elevation. High phylogenetic diversity, together with small-scale edaphic heterogeneity, cause large interspecific leaf trait variation in these hyper-diverse Andean forests. Trait network analysis revealed increasing leaf trait integration with elevation, suggesting stronger environmental filtering at colder and nutrient-poorer sites.
-
Keywords: |
leaf functional traits |
Urgilés, G.; Celleri, R.; Trachte, K.; Bendix, J. & Orellana-Alvear, J. (2021): Clustering of Rainfall Types Using Micro Rain Radar and LaserDisdrometer Observations in the Tropical Andes. Remote Sensing 13(5), 1-22.
Homeier, J. & Leuschner, C. (2021): Factors controlling the productivity of tropical Andean forests: climate and soil are more important than tree diversity. Biogeosciences 18(4), 1524-1541.
-
download
-
link
-
view metadata
-
DOI: 10.5194/bg-18-1525-2021
-
Abstract:
Abstract:
Theory predicts positive effects of species richness on the productivity of plant communities through complementary resource use and facilitative interactions between species. Results from manipulative experiments with tropical tree species indicate a positive diversity–productivity relationship (DPR), but the existing evidence from natural forests
is scarce and contradictory. We studied forest aboveground productivity in more than 80 humid tropical montane oldgrowth forests in two highly diverse Andean regions with large geological and topographic heterogeneity and related productivity to tree diversity and climatic, edaphic and stand
structural factors with a likely influence on productivity. Main determinants of wood production in the perhumid study regions were elevation (as a proxy for temperature), soil nutrient (N, P and base cation) availability and forest structural parameters (wood specific gravity, aboveground biomass). Tree diversity had only a small positive influence on productivity, even though tree species numbers varied largely (6–27 species per 0.04 ha). We conclude that the productivity of highly diverse Neotropical montane forests is primarily controlled by thermal and edaphic factors and stand structural properties, while tree diversity is of minor importance.
-
Keywords: |
soil nutrients |
wood production |
tropical montane forest |
elevational gradient |
Aboveground forest productivity |
Turini, N.; Thies, B.; Horna, N. & Bendix, J. (2021): Random forest-based rainfall retrieval for Ecuador using GOES-16 and IMERG-V06 data. European Journal of Remote Sensing 54(1), 117-139.
-
download
-
link
-
view metadata
-
DOI: 10.1080/22797254.2021.1884002
-
Abstract:
Abstract:
A new satellite-based algorithm for rainfall retrieval in high spatio-temporal resolution fo
Ecuador is presented. The algorithm relies on the precipitation information from the Integrated
Multi-SatEllite Retrieval for the Global Precipitation Measurement (GPM) (IMERG) and infrared
(IR) data from the Geostationary Operational Environmental Satellite-16 (GOES-16). It wa
developed to (i) classify the rainfall area (ii) assign the rainfall rate. In each step, we selected
the most important predictors and hyperparameter tuning parameters monthly. Between 19
April 2017 and 30 November 2017, brightness temperature derived from the GOES-16 IR
channels and ancillary geo-information were trained with microwave-only IMERG-V06 using
random forest (RF). Validation was done against independent microwave-only IMERG-V06
information not used for training. The validation results showed the new rainfall retrieva
technique (multispectral) outperforms the IR-only IMERG rainfall product. This offers using
the multispectral IR data can improve the retrieval performance compared to single-spectrum
IR approaches. The standard verification scored a median Heidke skill score of ~0.6 for the rain
area delineation and R between ~0.5 and ~0.62 for the rainfall rate assignment, indicating
uncertainties for Andes’s high elevation. Comparison of RF rainfall rates in 2 km2
resolution
with daily rain gauge measurements reveals the correlation of R = ~0.33.
-
Keywords: |
random forest |
rainfall |
GOES |