Publications
Found 866 publication(s)
- of type
González-Jaramillo, V.; Fries, A. & Bendix, J. (2019): AGB Estimation in a Tropical Mountain Forest (TMF) by Means of RGB and Multispectral Images Using an Unmanned Aerial Vehicle (UAV). Remote Sensing 11(12), 1-22.
-
download
-
link
-
view metadata
-
DOI: 10.3390/rs11121413
-
Abstract:
Abstract:
The present investigation evaluates the accuracy of estimating above-ground biomass (AGB)
by means of two dierent sensors installed onboard an unmanned aerial vehicle (UAV) platform
(DJI Inspire I) because the high costs of very high-resolution imagery provided by satellites or light
detection and ranging (LiDAR) sensors often impede AGB estimation and the determination of
other vegetation parameters. The sensors utilized included an RGB camera (ZENMUSE X3) and a
multispectral camera (Parrot Sequoia), whose images were used for AGB estimation in a natural
tropical mountain forest (TMF) in Southern Ecuador. The total area covered by the sensors included
80 ha at lower elevations characterized by a fast-changing topography and dierent vegetation covers.
From the total area, a core study site of 24 ha was selected for AGB calculation, applying two dierent
methods. The firstmethod used the RGB images and applied the structure formotion (SfM) process to
generate point clouds for a subsequent individual tree classification. Per the classification at tree level,
tree height (H) and diameter at breast height (DBH) could be determined, which are necessary input
parameters to calculate AGB (Mg ha 1) by means of a specific allometric equation for wet forests.
The second method used the multispectral images to calculate the normalized dierence vegetation
index (NDVI), which is the basis for AGB estimation applying an equation for tropical evergreen
forests. The obtained results were validated against a previous AGB estimation for the same area
using LiDAR data. The study found two major results: (i) The NDVI-based AGB estimates obtained
by multispectral drone imagery were less accurate due to the saturation eect in dense tropical forests,
(ii) the photogrammetric approach using RGB images provided reliable AGB estimates comparable
to expensive LiDAR surveys (R2: 0.85). However, the latter is only possible if an auxiliary digital
terrain model (DTM) in very high resolution is available because in dense natural forests the terrain
surface (DTM) is hardly detectable by passive sensors due to the canopy layer, which impedes
ground detection.
-
Keywords: |
Ecuador |
mountain rainforest |
UAV |
Biomass |
Drone |
Guallpa, M.; Orellana-Alvear, J. & Bendix, J. (2019): Tropical Andes Radar Precipitation Estimates Need High Temporal and Moderate Spatial Resolution. Water 11(5), 1-22.
-
download
-
link
-
view metadata
-
DOI: 10.3390/w11051038
-
Abstract:
Abstract:
Weather radar networks are an excellent tool for quantitative precipitation estimation
(QPE), due to their high resolution in space and time, particularly in remote mountain areas such as
the Tropical Andes. Nevertheless, reduction of the temporal and spatial resolution might severely
reduce the quality of QPE. Thus, the main objective of this study was to analyze the impact of spatial
and temporal resolutions of radar data on the cumulative QPE. For this, data from the world’s highest
X-band weather radar (4450 m a.s.l.), located in the Andes of Ecuador (Paute River basin), and from
a rain gauge network were used. Dierent time resolutions (1, 5, 10, 15, 20, 30, and 60 min) and
spatial resolutions (0.5, 0.25, and 0.1 km) were evaluated. An optical flow method was validated
for 11 rainfall events (with dierent features) and applied to enhance the temporal resolution of
radar data to 1-min intervals. The results show that 1-min temporal resolution images are able to
capture rain event features in detail. The radar–rain gauge correlation decreases considerably when
the time resolution increases (r from 0.69 to 0.31, time resolution from 1 to 60 min). No significant
dierence was found in the rain total volume (3%) calculated with the three spatial resolution data.
A spatial resolution of 0.5 km on radar imagery is suitable to quantify rainfall in the AndesMountains.
This study improves knowledge on rainfall spatial distribution in the Ecuadorian Andes, and it will
be the basis for future hydrometeorological studies
-
Keywords: |
Cuenca |
radar |
rainfall |
Paute |
Graefe, S.; Fang, D. & Butz, P. (2019): Water residence times in trees of a neotropical dry forest. Trees 1, 1–7.
Butz, P.; Hölscher, D.; Cueva, E. & Graefe, S. (2018): Tree Water Use Patterns as Influenced by Phenology in a Dry Forest of Southern Ecuador. Frontiers in Plant Science 9, 945.
Raffelsbauer, V.; Spannl, S.; Peña , K.; Pucha Cofrep, D.A.; Steppe, K. & Bräuning, A. (2019): Tree Circumference Changes and Species-Specific Growth Recovery After Extreme Dry Events in a Montane Rainforest in Southern Ecuador. Frontiers in Plant Sciences 10, 342.
-
log in to download
-
link
-
view metadata
-
DOI: 10.3389/fpls.2019.00342
-
Abstract:
Abstract:
Under drought conditions, even tropical rainforests might turn from carbon sinks to sources, and tree species composition might be altered by increased mortality. We monitored stem diameter variations of 40 tree individuals with stem diameters above 10 cm belonging to eleven different tree genera and three tree life forms with high-resolution dendrometers from July 2007 to November 2010 and additionally March 2015 to December 2017 in a tropical mountain rainforest in South Ecuador, a biodiversity hotspot with more than 300 different tree species belonging to different functional types. Although our study area receives around 2200 mm of annual rainfall, dry spells occur regularly during so-called “Veranillo del Niño” (VdN) periods in October-November. In climate change scenarios, droughts are expected with higher frequency and intensity as today. We selected dry intervals with a minimum of four consecutive days to examine how different tree species respond to drought stress, raising the question if some species are better adapted to a possible higher frequency and increasing duration of dry periods. We analyzed the averaged species-specific stem shrinkage rates and recovery times during and after dry periods. The two deciduous broadleaved species Cedrela montana and Handroanthus chrysanthus showed the biggest stem shrinkage of up to 2 mm after 10 consecutive dry days. A comparison of daily circumference changes over 600 consecutive days revealed different drought responses between the families concerning the percentage of days with stem shrinkage/increment, ranging from 27.5 to 72.5% for Graffenrieda emarginata to 45–55% for Podocarpus oleifolius under same climate conditions. Moreover, we found great difference of recovery times after longer-lasting (i.e., eight to ten days) VdN drought events between the two evergreen broadleaved species Vismia cavanillesiana and Tapirira guianensis. While Vismia replenished to pre-VdN stem circumference after only 5 days, Tapirira needed 52 days on average to restore its circumference. Hence, a higher frequency of droughts might increase inter-species competition and species-specific mortality and might finally alter the species composition of the ecosystem.
-
Keywords: |
tree growth |
DFG FOR2730 - RESPECT (2019): Tabebuia Bulletin, Issue 6. Laboratory for Climatology and Remote Sensing (LCRS), University of Marburg, Marburg, Germany.
-
download
-
link
-
view metadata
-
DOI: 10.5678/lcrs/for2730.cit.1736
-
Abstract:
Abstract:
The first Tabebuia Bulletin of our new Research Unit RESPECT summarizes the installation of our new plot system including the measuring devices and first verification of the newly established methods. First research achievements include the following aspects: plant functional types (PFT), water and carbon fluxes, tree above- and belowground traits, soil development, photosynthetic gas exchange measurements, abiotic covariates, functional trait diversity and herbivory, and optimization of biomass gain on pastures. Our partner NCI reports advances in the establishment of newly protected areas and the Ecuador’s INABIO institution introduces itself. Videos of our previous research are available via our website and data warehouse, which now also offers new search features for publications as well as upload information.
-
Keywords: |
Ecuador |
Newsletter |
Tabebuia Bulletins |
Santillan, V.; Quitian, M.; Tinoco, B.A.; Zarate, E.; Schleuning, M.; Boehning-Gaese, K. & Neuschulz, E. (2018): Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia x, x-x.
Santillan, V.; Quitian, M.; Tinoco, B.A.; Zarate, E.; Schleuning, M.; Boehning-Gaese, K. & Neuschulz, E. (2018): Temperature and precipitation, but not resource availability drive spatio-temporal variation in bird assemblages along a tropical elevational gradient. PlosOne x, x-x.
Quitian, M.; Santillan, V.; Espinosa, C.I.; Homeier, J.; Boehning-Gaese, K.; Schleuning, M. & Neuschulz, E. (2018): Direct and indirect effects of plant and frugivore diversity on structural and functional components of fruit removal. Oecologia x, x-x.
Quitian, M.; Santillan, V.; Bender, I.M.; Espinosa, C.I.; Homeier, J.; Boehning-Gaese, K.; Schleuning, M. & Neuschulz, E. (2018): Functional responses of avian frugivores to variation of fruit resources in natural and fragmented forests. Functional Ecology x, x-x.
Hanz, D.; Boehning-Gaese, K.; Ferger, S.; Fritz, S.; Neuschulz, E.; Quitian, M.; Santillan, V.; Töpfer, T. & Schleuning, M. (2018): Functional and phylogenetic diversity of bird assemblages are filtered by different environmental drivers. Journal of Biogepgraphy x, x-x.
Bender, I.M.; Kissling, W.; Blendinger, P.; Hensen, I.; Kühn, I.; Munoz, M.; Neuschulz, E.; Nowak, L.; Quitian, M.; Saavedra, F.; Santillan, V.; Töpfer, T.; Wiegand, T.; Dehling, D. & Schleuning, M. (2018): Morphological trait matching shapes plant-frugivore networks across the Andes. Ecography 41(11), 1910-1919.
Bruelheide, H.; Nadrowski, K.; Assmann, T.; Bauhus, J.; Both, S.; Buscot, F.; Chen, X.; Ding, B.; Durka, W. & Erfmeier, A. (2014): Designing forest biodiversity experiments: general considerations illustrated by a new large experiment in subtropical China. Methods in Ecology and Evolution 5(1), 74--89.
Campozano, L.; Trachte, K.; Celleri, R.; Samaniego, E.; Bendix, J.; Cristóbal, A. & Mejia, J.F. (2018): Climatology and Teleconnections of Mesoscale Convective Systems in an Andean Basin in Southern Ecuador: The Case of the Paute Basin. Advances in Meteorology 2018, 1-13.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1155/2018/4259191
-
Abstract:
Abstract:
Mesoscale convective systems (MCSs) climatology, the thermodynamic and dynamical variables, and teleconnections influencing MCSs development are assessed for the Paute basin (PB) in the Ecuadorian Andes from 2000 to 2009. The seasonality of MCSs occurrence shows a bimodal pattern, with higher occurrence during March-April (MA) and October-November (ON), analogous to the regional rainfall seasonality. The diurnal cycle of MCSs shows a clear nocturnal occurrence, especially during the MA and ON periods. Interestingly, despite the higher occurrence of MCSs during the rainy seasons, the monthly size relative frequency remains fairly constant throughout the year. On the east of the PB, the persistent high convective available potential and low convective inhibition values from midday to nighttime are likely related to the nocturnal development of the MCSs. A significant positive correlation between the MCSs occurrence to the west of the PB and the Trans-Niño index was found, suggesting that ENSO is an important source of interannual variability of MCSs frequency with increasing development of MCSs during warm ENSO phases. On the east of the PB, the variability of MCSs is positively correlated to the tropical Atlantic sea surface temperature anomalies south of the equator, due to the variability of the Atlantic subtropical anticyclone, showing main departures from this relation when anomalous conditions occur in the tropical Pacific due to ENSO.
-
Keywords: |
Andes |
Meteorology |
Trachte, K. (2018): Atmospheric Moisture Pathways to the Highlands of the Tropical Andes: Analyzing the Effects of Spectral Nudging on Different Driving Fields for Regional Climate Modeling. Atmosphere 9(11), 1-24.
Carrillo Rojas, G.; Silva, B.; Rollenbeck, R.; Celleri, R. & Bendix, J. (2018): The breathing of the Andean highlands: Net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agricultural and Forest Meteorology 265, 30-47.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.agrformet.2018.11.006
-
Abstract:
Abstract:
Atmospheric carbon (CO2) exchange, evapotranspiration (ET) processes, and their interactions with climatic drivers across tropical alpine grasslands are poorly understood. This lack of understanding is particularly evident for the páramo, the highest vegetated frontier in the northern Andes, the main source of water for inter-Andean cities, and a large carbon storage area. Studies of CO2 and ET fluxes via the standard Eddy Covariance (EC) technique have never been applied to this region, limiting the understanding of diurnal / nocturnal exchanges and budget estimations. In this paper, we report the first EC analysis conducted on the Andean páramo (3765?m a.s.l.); this analysis measured CO2, ET, and micrometeorological variables over two years (2016–2018) to understand their interactions with climatic / biophysical controls. The páramo was found to be a source of CO2 and exhibited a net positive exchange (mean = +99?±?30 gC m?2 per year). The light-responses of net CO2 exchange and the primary productivity were correlated and model-parameterized. Evapotranspiration was 635?±?9?mm per year (51% of the annual rainfall total), and we obtained crop coefficients for the dominant vegetation (Tussock grass) based on reference-ET models FAO56 and ASCE-ERWI (0.90 and 0.78, respectively). We also compared our results to those from other high-altitude (alpine) and high-latitude grasslands (tundra). Finally, we demonstrate that our measurement period is representative of the páramo’s longer-term climate dynamics. Our investigation contributes to the body of knowledge on the land surface-atmosphere processes of the tropical Andes and supports decision-making about ecosystem services management and the preservation of this vulnerable biome.
-
Keywords: |
Ecuador |
carbon |
Paramo |
Evapotranspiration |
Tropical Andes |
Eddy covariance |
Knüsting, J.; Brinkmann, M.C.; Silva, B.; Schorsch, M.; Bendix, J.; Beck, E. & Scheibe, R. (2018): Who will win where and why? An ecophysiological dissection of the competition between a tropical pasture grass and the invasive weed Bracken over an elevation range of 1000m in the tropical Andes. PlosOne 13, 1-24.
-
download
-
link
-
view metadata
-
DOI: 10.1371/journal.pone.0202255
-
Abstract:
Abstract:
In tropical agriculture, the vigorously growing Bracken fern causes severe problems by
invading pastures and out-competing the common pasture grasses. Due to infestation by
that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodi-
versity-rich tropical forest is progressively cleared for new grazing areas. Here we present a
broad physiological comparison of the two plant species that are the main competitors on
the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata
and the weed Bracken (Pteridium arachnoideum).With increasing elevation, the competitive
power of Bracken increases as shown by satellite data of the study region. Using data
obtained from field measurements, the annual biomass production of both plant species, as
a measure of their competitive strength, was modeled over an elevational gradient from
1800 to 2800 m. The model shows that with increasing elevation, biomass production of the
two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the
grass. In greenhouse experiments, the effects on plant growth of the presumed key vari-
ables of the elevational gradient, temperature and UV radiation, were separately analyzed.
Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more
than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of
Bracken and its effective protection from UV radiation contribute to the success of the weed
on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavo-
noids as UV-scavengers increased with the elevation. Combining modeling with measure-
ments in greenhouse and field allowed to explain the invasive growth of a common weed in
upland pastures. The performance of Setaria decreases with elevation due to suboptimal
photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.
-
Keywords: |
South Ecuador |
Bracken fern |
competition |
Gonzales-Jaramillo, V.; Fries, A.; Zeilinger, J.; Homeier, J.; Paladines, J. & Bendix, J. (2018): Estimation of Above Ground Biomass in a Tropical Mountain Forest in Southern Ecuador Using Airborne LiDAR Data. Remote Sensing 10, .
-
download
-
link
-
view metadata
-
DOI: 10.3390/rs10050660
-
Abstract:
Abstract:
A reliable estimation of Above Ground Biomass (AGB) in Tropical Mountain Forest (TMF)
is still complicated, due to fast-changing climate and topographic conditions, which modifies the
forest structure within fine scales. The variations in vertical and horizontal forest structure are hardly
detectable by small field plots, especially in natural TMF due to the high tree diversity and the
inaccessibility of remote areas. Therefore, the present approach used remotely sensed data from a
Light Detection and Ranging (LiDAR) sensor in combination with field measurements to estimate
AGB accurately for a catchment in the Andes of south-eastern Ecuador. From the LiDAR data,
information about horizontal and vertical structure of the TMF could be derived and the vegetation at
tree level classified, differentiated between the prevailing forest types (ravine forest, ridge forest and
Elfin Forest). Furthermore, topographical variables (Topographic Position Index, TPI; Morphometric
Protection Index, MPI) were calculated by means of the high-resolution LiDAR data to analyse the
AGB distribution within the catchment. The field measurements included different tree parameters
of the species present in the plots, which were used to determine the local mean Wood Density
(WD) as well as the specific height-diameter relationship to calculate AGB, applying regional scale
modelling at tree level. The results confirmed that field plot measurements alone cannot capture
completely the forest structure in TMF but in combination with high resolution LiDAR data, applying
a classification at tree level, the AGB amount (Mg ha??1) and its distribution in the entire catchment
could be estimated adequately (model accuracy at tree level: R2 > 0.91). It was found that the AGB
distribution is strongly related to ridges and depressions (TPI) and to the protection of the site (MPI),
because high AGB was also detected at higher elevations (up to 196.6 Mg ha??1, above 2700 m), if the
site is situated in depressions (ravine forest) and protected by the surrounding terrain. In general,
highest AGB is stored in the protected ravine TMF parts, also at higher elevations, which could only
be detected by means of the remote sensed data in high resolution, because most of these areas are
inaccessible. Other vegetation units, present in the study catchment (pasture and subpáramo) do not
contain large AGB stocks, which underlines the importance of intact natural forest stands.
-
Keywords: |
LiDAR |
AGB estimation |
Castro, L.M.; Härtl, F.; Ochoa Moreno, S.; Calvas, B.; Izquierdo Montoya, G.L. & Knoke, T. (2018): Integrated bio-economic models as tools to support land-use decision making: a review of potential and limitations. Journal of Bioeconomics online , online.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s10818-018-9270-6
-
Abstract:
Abstract:
Bio-economic modelling has become a useful tool for anticipating the
outcomes of policies and technologies before their implementation. Advances in mathematical
programming have made it possible to build more comprehensive models. In
an overview of recent studies about bio-economic models applied to land-use problems
in agriculture and forestry,we evaluated howaspects such as uncertainty,multiple
objective functions, system dynamics and time have been incorporated into models.
We found that single objective models were more frequently applied at the farm level,
while multiple objective modelling has been applied to meet concerns at the landscape
level. Among the objectives, social aspects are seldom represented in allmodels, when
being compared to economic and environmental aspects. The integration of uncertainty
is occasionally a topic, while stochastic approaches are more frequently applied than
non-stochastic robust methods. Mostmultiple-objectivemodels do not integrate uncertainty
or sequential decision making. Static approaches continue to be more recurrent
than truly dynamic models. Even though integrating multiple aspects may enhance
our understanding of a system; it involves a tradeoff between complexity and robustness
of the results obtained. Land-use models have to address this balance between
complexity and robustness in order to evolve towards robust multiple-objective spatial
optimization as a prerequisite to achieve sustainability goals.
-
Keywords: |
Uncertainty analysis |
land use modeling |
Pierick, K. (2017): Variation of tree fine root traits along a topographical gradient in an Ecuadorian tropical montane forest University of Goettingen, master thesis
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
Although fine root traits are crucially important for plants and ecosystems, little is known about the mechanisms driving their variation. According to the theory of the plant economics spectrum, plants have to adopt a consistent strategy for all organs on a one-dimensional axis from slow to fast nutrient acquisition. The different strategies are supposed to be reflected in fine root traits, and to vary with resource availability. This master’s thesis aimed to investigate the variation of tree fine root traits along a
topographical gradient in southern Ecuador, and their coordination with aboveground traits, in order to find evidence for a plant economics spectrum.
In a tropical montane forest near Loja, fine root systems (diameter < 2 mm) of 179 adult trees were sampled from 18 plots at different slope positions. The steep slopes in this megadiverse ecosystem are characterized by decreasing fertility from the lower to the upper slope, and a high turnover of tree species on small scales along the slopes. The traits root diameter, specific root length (SRL), root tissue density (RTD), root branching intensity (RBI) and nitrogen content (N root ) were measured on each root system. The root traits were tested for being correlated with a topography index, edaphic factors, and aboveground traits. These relationships were analyzed both on the level of plot means and individual trees. Moreover, functional dispersion of the root traits was calculated for each plot and related to the topographical gradient. Pagel’s ? was calculated as an indicator of phylogenetic signal for each root trait. Furthermore, mixed effect models and principal component analyses were calculated in order to better understand the complex relationships between environment, plant traits, and phylogeny.
Fine roots tended to be thicker and less intensely branched, contain less nitrogen and have lower SRL with increasing distance from the lower slope. Functional dispersion decreased from lower to upper slope. Especially SRL and N root were closely linked to aboveground traits. Trees with high SRL and N root tended to have softer wood and leaves, higher specific leaf area and higher leaf N and P concentrations. These trends were also apparent when comparing plot means instead of data from tree individuals. This indicates that trees evolved consistent resource economic strategies that manifest
in their fine roots, wood, and leaves. Species with a slow, conservative strategy are typical for the upper slopes, whereas acquisitive species assembled at the lower slopes. However, RTD was independent from the topographical gradient and most aboveground traits. SRL, N root and root diameter had strong phylogenetic signals. Rubiaceae and Moraceae were typical families with acquisitive traits growing at the lower slope, whereas
the early-diverged Lauraceae occurred predominantly at the upper slope and had very thick roots of the conservative type.
These findings provide valuable new insights into patterns of fine root trait variation. They confirm the hypothesis of a plant economics spectrum where root traits are integrated, and demonstrate that tree species in tropical montane forests assemble along topographical gradients according to their resource economics strategies and the associated trait combinations.
-
Keywords: |
topographic heterogenity |
fine roots |
functional richness |
functional traits |
Mosquera, G.; Brum, M.; Barros, F.d.V.; Vieira Pompeu, P.; Rodas, M.; Lazo, P.; Müller, C.S.; Mulligan, M.; Asbjornses, H.; Moore, G.W. & Oliveira, R.S. (2017): Ecohydrological drivers of Neotropical vegetation in montane ecosystems. Ecohydrology n/a, e1932.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1002/eco.1932
-
Abstract:
Abstract:
Montane ecosystems are known for their high numbers of endemic species, unique climate conditions, and wide variety of ecosystem services such as water supply and carbon storage. Although many ecohydrological and climatic studies of montane environments have been carried out in temperate and boreal regions, few have been done in Neotropical regions. Hence, the objective of this review is to synthesize the existing literature on the main factors (biotic and abiotic) that influence vegetation distribution, functional traits, and ecohydrological processes and feedbacks in tropical montane ecosystems and to identify key knowledge gaps. Most of the literature used includes work conducted in Neotropical montane rainforests, cloud forests, and grass/scrublands (e.g., páramos, punas, and campos de altitude/rupestres). Fog is a major cli- matic attribute in tropical montane habitats. We found that fog regimes (frequency and intensity of fog events) influence both water inputs (i.e., canopy interception and foliar water uptake) and outputs (evapotranspiration) and represent an important driver of local species composition, dominance of plant functional types, and ecological functioning. The stability and conservation of tropical montane ecosystems depends on such ecohydrological fluxes, which are sensitive to increases in air temperature and changing precipitation and fog regimes. Furthermore, to better inform effective conservation and restoration strategies, more work is needed to elucidate how key ecohydrological processes are affected by land use conversion to agriculture and pasture lands, as human activities influence the water budgets in Neotropical montane watersheds not only at regional?scales but also globally.
KEYWORDS
-
Keywords: |
ecosystem services |
grassland |
fog |
montane rain forest |
water and carbon budgets |
Quitian, M.; Santillan, V.; Espinosa, C.I.; Homeier, J.; Boehning-Gaese, K.; Schleuning, M. & Neuschulz, E. (2017): Elevation-dependent effects of forest fragmentation on plant–bird interaction networks in the tropical Andes. Ecography 40, 1-10.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/ecog.03247
-
Abstract:
Abstract:
Tropical forests harbor diverse ecological communities of plants and animals that are organized in complex interaction networks. The diversity and structure of plant–animal interaction networks may change along elevational gradients and in response to human-induced habitat fragmentation. While previous studies have analyzed the effects of elevation and forest fragmentation on species interaction networks in isolation, to our knowledge no study has investigated whether the effects of forest fragmentation on species interactions may differ along elevational gradients. In this study, we analyzed main and interaction effects of elevation and forest fragmentation on plant–frugivore interaction networks at plant and bird species level. Over a period spanning two years, we recorded plant–frugivore interactions at three elevations (1000, 2000 and 3000 m a.s.l.) and in two habitat types (continuous and fragmented forest) in tropical montane forests in southern Ecuador. We found a consistent effect of elevation on the structure of plant–frugivore networks. We observed a decrease in the number of effective bird partners of plants and, thus, a decline in the redundancy of bird species with increasing elevation. Furthermore, bird specialization on specific plant partners increased towards high elevations. Fragmentation had a relatively weak effect on the interaction networks for both plant and bird species, but resulted in a significant increase in bird specialization in fragmented forests at high elevations. Our results indicate that forest fragmentation may have stronger effects on plant–frugivore interaction networks at high compared to low elevations because bird species richness declined more steeply towards high elevations than plant species richness. We conclude that conservation efforts should prioritize the maintenance of consumer diversity, for instance by maintaining stretches of continuous forest. This applies in particular to species-poor communities, such as those at high elevations, as the ecological processes in these communities seem most sensitive towards forest fragmentation.
-
Keywords: |
elevational gradient |
mutualistic interactions |
specialization |
Fabian, T. (2017): Sodium retention in the canopy of a tropical montane forest in South Ecuador Karlsruher Institut für Technologie, Institut für Geographie und Geoökologie, bachelor thesis
-
log in to download
-
link
-
view metadata
-
Abstract:
Abstract:
Recent studies raise the hypothesis that Na shortage restricts decomposition and affects the carbon cycle in tropical forests. When Na concentrations in soils are low and the stands are far off-coast, they do not receive substantial Na inputs from the atmosphere. Since terrestrial plants have low concentrations of Na, which is not considered as an essential element, the demand of soil fauna may not be covered. Yet, in contrast to animals, little is known on Na demands of phyllosphere microorganisms.
This thesis presents results from a study on Na limitation in a montane forest ecosystem in South Ecuador, which is located on the Eastern cordillera of the Andes, in a microcatchment under an undisturbed lower montane rainforest. The study area is characterized by low Na concentrations because of low deposition rates with incident precipitation and by low Na stocks in in the soils and in the organic layer. Sodium fluxes in rainfall, throughfall, stemflow, litter leachate, litterfall and organic layer have been monitored since 1998. Results reveal overall low Na concentrations in the ecosystem fluxes. Higher Na fluxes with incident rainfall than with throughfall suggest that Na is retained in the canopy. Therefore, this study aims at testing the hypothesis that Na is retained in the canopy because of Na limitation of microorganisms in phyllosphere.
To explore the role of the phyllosphere in Na retention, I sampled leaves covered by phyllosphere microorganisms and leaves without phyllosphere cover from 12 tree species belonging to 7 plant families frequently occurring in the study area. The fresh leaves were sprayed with a NaCl solution containing 1 mg L-1 Na, corresponding to the Na concentration in incident rainfall in the study area during La Niña events. Comparison with a control treatment excluded effects by abiotic Na fixation on the surface of the leaves.
The results show that increasing phyllosphere cover leads to a significantly enhanced Na retention, which is much higher on understory tree leaves than on leaves of the upper canopy. Leaching of K, Ca and Mg was higher with increasing degree of phyllosphere cover, which can be attributed to increasing element exchange between foliage and phyllosphere with leaf age. These results suggest that Na availability possibly plays a regulating role in the study ecosystem which might even grow in importance if Na deposition from the atmosphere continues to decrease or stabilizes at the current low level.
-
Keywords: |
Q2 |
canopy |
sodium |
phyllosphere |
sodium limitation |
sodium retention |
Manchego, C.; Hildebrandt, P.; Cueva Ortiz, J.L.; Espinosa, C.; Stimm, B. & Günter, S. (2017): Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador. PLOS ONE 12(12), e0190092.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1371/journal.pone.0190092
-
Abstract:
Abstract:
Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.
-
Keywords: |
Southern Ecuador |
deforestation |
climate change scenario |
tree species |
Seasonally dry tropical forest |
species distribution modelling |
Guio Blanco, C.M.; Brito Gómez, V.M.; Crespo, P. & Ließ, M. (2018): Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest. Geoderma 316, 100-114.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.geoderma.2017.12.002
-
Abstract:
Abstract:
Soils of Páramo ecosystems regulate the water supply to many Andean populations. In spite of being a necessary input to distributed hydrological models, regionalized soil water retention data from these areas are currently not available. The investigated catchment of the Quinuas River has a size of about 90 km2 and comprises parts of the Cajas National Park in southern Ecuador. It is dominated by soils with high organic carbon contents, which display characteristics of volcanic influence. Besides providing spatial predictions of soil water retention at the catchment scale, the study presents a detailed methodological insight to model setup and validation of the underlying machine learning approach with random forest. The developed models performed well predicting volumetric water contents between 0.55 and 0.9 cm3 cm? 3. Among the predictors derived from a digital elevation model and a Landsat image, altitude and several vegetation indices provided the most information content. The regionalized maps show particularly low water retention values in the lower Quinuas valley, which go along with high prediction uncertainties. Due to the small size of the dataset, mineral soils could not be separated from organic soils, leading to a high prediction uncertainty in the lower part of the valley, where the soils are influenced by anthropogenic land use.
-
Keywords: |
Páramo |
random forest |
water retention |
validation |
parameter tuning |
Quichimbo Miguitama, P.G.; Jiménez, L.; Veintimilla, D.; Tischer, A.; Günter, S.; Mosandl, R. & Hamer, U. (2017): Forest Site Classification in the Southern Andean Region of Ecuador: A Case Study of Pine Plantations to Collect a Base of Soil Attributes. Forests 473(8), 1-22.
-
log in to download
-
link
-
view metadata
-
DOI: 10.3390/f8120473
-
Abstract:
Abstract:
Forest site classification adapted to the respective site conditions is one prerequisite for
sustainable silviculture. This work aims to initiate the forest site classification for pine plantations
in the southern Andean region of Ecuador. Forest productivity, estimated by the dominant height
of 20-year-old trees (DH20), was related to data from climate, topography, and soil using 23 plots
installed in pine plantations in the province of Loja. Forest site productivity was classified as:
low (class C: 13.4 m), middle (class B: 16.6 m), and high (Class A: 22.3 m). Strong determinants
to differentiate the forest site classes were: the short to medium term available Ca and K stocks
(organic layer + mineral soil standardized to a depth of 60 cm), soil acidity, the C:N ratio, clay and
sand content, forest floor thickness, altitude, and slope. The lowest forest productivity (Class C)
is mainly associated with the lowest short to medium term available K and Ca stocks. Whereas,
in site classes with the highest forest productivity, pines could benefit from a more active microbial
community releasing N and P, since the soil pH was about 1 unit less acidic. This is supported by the
lowest forest floor thickness and the narrowest C:N ratio.
-
Keywords: |
forest |
soil nutrients |
soil |
pine forest |
Pinus patula |
Forest plantation |
forest productivity |
Wright, C.; Kawaga-Viviani, A.; Gerlein-Safdi, C.; Mosquera, G.; Poca, M.; Tseng, H. & Chun, K.P. (2017): Advancing ecohydrology in the changing tropics: Perspectives from early career scientists. Ecohydrology na, e1918.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1002/eco.1918
-
Abstract:
Abstract:
Tropical ecosystems offer a unique setting for understanding ecohydrological processes, but to date, such investigations have been limited. The purpose of this paper is to highlight the impor- tance of studying these processes—specifically, how they are being affected by the transforma- tive changes taking place in the tropics—and to offer an agenda for future research. At present, the ongoing loss of native ecosystems is largely due to agricultural expansion, but parallel pro- cesses of afforestation are also taking place, leading to shifts in ecohydrological fluxes. Similarly, shifts in water availability due to climate change will affect both water and carbon fluxes in trop- ical ecosystems. A number of methods exist that can help us better understand how changes in land use and climate affect ecohydrological processes; these include stable isotopes, remote sens- ing, and process?based models. Still, our knowledge of the underlying physical mechanisms, espe- cially those that determine the effects of scale on ecosystem processes, remains incomplete.We assert that development of a knowledge base concerning the effects of transformative change on ecological, hydrological, and biogeochemical processes at different spatio?temporal scales is an urgent need for tropical regions and should serve as a compass for emerging ecohydrologists. To reach this goal, we advocate a research agenda that expands the number and diversity of eco- systems targeted for ecohydrological investigations and connects researchers across the tropics. We believe that the use of big data and open source software—already an important integrative tool/skill for the young ecohydrologist—will be key in expanding research capabilities.
-
Keywords: |
remote sensing |
climate change |
big data |
land use/land cover |
modelling |
stable isotopes |
tropical ecosystems |
Cárate Tandalla, D.; Camenzind, T.; Leuschner, C. & Homeier, J. (2018): Contrasting species responses to continued nitrogen and phosphorus addition in tropical montane forest tree seedlings. Biotropica 50(2), 234-245.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/btp.12518
-
Abstract:
Abstract:
Global changes in nutrient deposition rates are likely to have profound effects on plant communities, particularly in the nutrient-limited systems of the tropics. We studied the effects of increased nutrient availability on the seedlings of six tree species in montane forests of southern Ecuador in situ. After five years of continued N, P, or N+P addition, naturally grown seedlings of each of the two most common
species at each elevation (1000, 2000, and 3000 m asl) were harvested for analyses of leaf morphology, nutrient content, herbivory, and tissue biomass allocation. Most species showed increased foliar N and P concentrations after addition of each respective element. Leaf tissue N:P ratios of >20 in the control plants of all species suggest that P is more growth-limiting in these forests than N. Leaf
morphological responses to nutrient addition were species and nutrient specific, with some species (Hedyosmum purparescens, Graffenrieda emarginata) exhibiting increased specific leaf area (SLA), and others (Graffenrieda harlingii) increased leaf area ratios (LAR). Pouteria torta (1000 m) had lower SLA and LAR after P addition. Increased herbivory was only evident in G. emarginata (after N and N+P addition).
Only the species from 3000 m asl modified biomass allocation after nutrient addition. In general, N and N+P addition more strongly affected the species studied at the upper elevations, whereas P addition had a similar range of effects on the species at all elevations. We conclude that the responses of the studied tropical montane forest tree seedlings to chronic N and P addition are highly species-specific and that successful adaptation to increased nutrient availability will depend on species-specific morphological and physiological plasticity.
-
Keywords: |
seedlings |
NUMEX |
functional traits |
Wilcke, W.; Velescu, A.; Leimer, S.; Bigalke, M.; Boy, J. & Valarezo, C. (2017): Biological versus geochemical control and environmental change drivers of the base metal budgets of a tropical montane forest in Ecuador during 15 years. Biogeochemistry 136, 167-189.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1007/s10533-017-0386-x
-
Abstract:
Abstract:
To assess the susceptibility of the base metal budget of a remote tropical montane forest in Ecuador to environmental change, we determined the extent of biological control of base metal fluxes and explored the impact of atmospheric inputs and precipitation considered as potential drivers of ecosystem change on the base metal fluxes. We quantified all major base metal fluxes in a ca. 9.1 ha forested catchment from 1998 to 2013. Mean (±s.d.) annual flux to the soil via throughfall+ stemflow+litterfall was 13800±1500 mg m-2 Ca, 19000±1510 mg m-2 K, 4690±619 mg m-2 Mg and 846±592 mg m-2 Na of which 22±6%, 45±16%, 39±10% and 84±33%, respectively, were leached to below the organic layer. The mineral soil retained 79-94% of this Ca, K and Mg, while Na was released. Weathering rates estimated with three different approaches ranged from not detected (ND) to 504 mg m-2 yr-1 Ca, ND-1769 mg m-2 yr-1 K, 287-597 mg m-2 yr-1 Mg and 403-540 mg m-2 yr-1 Na. The size of mainly biologically controlled aboveground fluxes of Ca, K and Mg was 1-2 orders of magnitude larger than that of mainly geochemically controlled fluxes (sorption to soil and weathering). The elemental catchment budgets (total deposition-streamflow) were positive for Ca (574±893 mg m-2) and K (1330±773 mg m-2), negative for Na (-370±1300 mg m-2) and neutral for Mg (1.89±304 mg m-2). Our results demonstrate that biological processes controlled element retention for Ca, K and Mg in the biological part of the ecosystem. This was different for Na, which was mainly released by weathering from the study catchment, while the biological part of the ecosystem was Na-poor. The deposition of base metals was the strongest driver of their budgets suggesting that the base metal cycling of the study ecosystem is susceptible to changing deposition.
-
Keywords: |
throughfall |
litterfall |
stem flow |
alkaline dust deposition |
acid deposition |
catchment budget |
stream flow |
weathering rates |
Beck, E.; Knoke, T.; Farwig, N.; Breuer, L.; Siddons, D. & Bendix, J. 2017: Landscape Restoration, Sustainable Land Use and Cross-scale Monitoring of Biodiversity and Ecosystem Functions. A Science-directed Approach for South Ecuador. (Universität Bayreuth).
-
download
-
link
-
view metadata
-
DOI: 10.5678/lcrs/pak823-825.cit.1696
-
Abstract:
Abstract:
In 201 3, the “Platform for Biodiversity and Ecosystem
Monitoring and Research in South Ecuador”
(www.TropicalMountainForest.org) was launched as a
knowledge transfer program in the biodiversity
hotspot of the southern Ecuadorian Andes, jointly
funded by the German Research Foundation (DFG)
and Ecuadorian non-university partners. One of the
overall aims of the transdisciplinary program is to
design science-directed recommendations for an
ecologically sustainable, economically profitable and
socially compatible use of the mainly rural land. The
second major goal of the program is the development
of functional indicators that are crucial for the
monitoring of impacts of environmental change on the
ecosystem and its functions. They encompass
abiotic, abiotic-biotic and biotic-biotic interrelations,
and are sensitive - though to different extent - to
subtle changes in the environment. Therefore, it is not
only the interaction per se, which has to be examined.
In addition to that the quantification of the response to
certain environmental stressors is needed.
Representing the fundament of ecosystem functioning,
biodiversity as such or certain functional taxa can
be monitored for an assessment of the ecosystem’s
state. Important further criteria for the selection of an
indicator are general applicability, easiness of
handling and stability against pitfalls.
This book “Landscape Restoration, Sustainable
Use and Cross-scale Monitoring of Biodiversity
and Ecosystem Functions: A Science-directed
Approach for South Ecuador” presents in its first
part a compilation of sustainable land use concepts
that have been proven for application in the Provinces
Loja and Zamora Chinchipe and beyond, given
comparable environmental conditions. The second
part describes functional indicators as well as their
development, monitoring and application.
Both parts start with introductory chapters on the
major aims of the respective transdisciplinary
program, followed by contributions showing how land
use concepts can be used to achieve sustainable
management and ecosystem services, as well as how
functional indicators can be used to assess and
monitor the stability of biodiversity and ecosystem
functions.
It should be stressed that this book has not the aim to
present only a scientific summary of the developed
systems. Instead, it targets on stakeholders as our
non-university partners and beyond which are in
charge of environmental planning and ecosystem
function surveillance in Ecuador. In the manner of a
technical handbook, it gives a comprehensible introduction
to the land use option or the indicator,
followed by hints how to apply, implement and assess
the developed systems. The book is and was
complementing our three pillars of capacity building
which also includes stakeholder workshops on the
developed land use options and indicators, and
demonstration plots in the field.
With this book the authors highly acknowledge the
generous funding of the research by the German
Science Foundation (DFG) and the logistic,
administrative and practical support by the foundation
Naturaleza y Cultura Internacional (Loja and Del
Mar). Such research requires also fruitful
collaboration with local academic institutions, the
Universidad Tecnica Particular de Loja, the
Universidad Nacional de Loja, the Universidad de
Cuenca, the Universidad de Azuay, and the local
weather service INAMHI. These partnerships were a
great experience in capacity building on both sides,
as evidenced by a number of academic degrees
obtained and by numerous joint publications. The
authors are also grateful for the support of our nonuniversity
research partners beyond NCI, namely
ETAPA EP (Empresa Pública Municipal de
Telecomunicaciones, Agua potable, lcantarillado y
Saneamiento de Cuenca- Ecuador), the Gobierno
Municipal de Zamora and the regional water fund
FORAGUA (Fondo Regional del Agua). Further,
sincere thanks are owed to the Ecuadorian Ministry of
the Environment (MAE) for permission to conduct
research in South Ecuador.
The Editors
-
Keywords: |
sustainable land use |
Cross-scale Monitoring |
science-directed guidelines |
landscape restoration |