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Abstract
Tropical mountain ecosystems are threatened by climate and land-use changes. Their diversity and complexity make projec-
tions how they respond to environmental changes challenging. A suitable way are trait-based approaches, by distinguishing 
between response traits that determine the resistance of species to environmental changes and effect traits that are relevant 
for species’ interactions, biotic processes, and ecosystem functions. The combination of those approaches with land surface 
models (LSM) linking the functional community composition to ecosystem functions provides new ways to project the 
response of ecosystems to environmental changes. With the interdisciplinary project RESPECT, we propose a research 
framework that uses a trait-based response-effect-framework (REF) to quantify relationships between abiotic conditions, 
the diversity of functional traits in communities, and associated biotic processes, informing a biodiversity-LSM. We apply 
the framework to a megadiverse tropical mountain forest. We use a plot design along an elevation and a land-use gradient 
to collect data on abiotic drivers, functional traits, and biotic processes. We integrate these data to build the biodiversity-
LSM and illustrate how to test the model. REF results show that aboveground biomass production is not directly related to 
changing climatic conditions, but indirectly through associated changes in functional traits. Herbivory is directly related to 
changing abiotic conditions. The biodiversity-LSM informed by local functional trait and soil data improved the simulation 
of biomass production substantially. We conclude that local data, also derived from previous projects (platform Ecuador), are 
key elements of the research framework. We specify essential datasets to apply this framework to other mountain ecosystems.

Keywords Biodiversity-land surface model · Functional traits · High mountains · Research framework · Response-effect-
framework

Introduction

Tropical mountains are biodiversity hotspots (Myers et al. 
2000). At the same time, mountain ecosystems are vulner-
able to environmental changes (Elsen and Tingley 2015). 
Losses of natural habitats lead to a rapid loss of species 

with their adaptations at low elevations and mountain-top 
extinctions that result from increasing temperatures (Stein-
bauer et al. 2018; Knoke et al. 2020). While changes in 
mountain biodiversity are increasingly documented (Peters 
et al. 2019), projecting the consequences for ecosystem func-
tioning remains challenging, because of the rapidly chang-
ing abiotic conditions over short distances and a generally 
greater elevational than lateral turnover across communities 
(e.g., Rahbek et al. 2019).

One opportunity to address the complexity of mountain 
ecosystems is to adopt and adapt trait-based concepts (Sud-
ing et al. 2008; Díaz et al. 2016). Analyses of functional 
traits can be used for comparisons across ecosystems, which 
differ in taxonomic composition (Lavorel et al. 2007; Sud-
ing et al. 2008). Trait-based approaches often distinguish 
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between response traits that determine the response of spe-
cies to environmental changes and effect traits relevant for 
biotic processes and ecosystem functioning (Suding et al. 
2008; Díaz et al. 2013; Schleuning et al. 2015). Trait-based 
response-effect-frameworks (REFs, Suding et  al. 2008) 
are thus particularly suitable to explore the relationships 
between abiotic conditions and the diversity of functional 
traits in ecological communities along environmental gradi-
ents. Recently, trait-based frameworks have been proposed 
to quantify the variation in species interactions and their 
associated biotic processes and ecosystem functions (Schle-
uning et al. 2015, 2020). This is important, as changes in 
interactions modulate the response of species to climate 
change (Kharouba et  al. 2018; Schleuning et  al. 2020). 
Because trait-based approaches can be generalized across 
ecological communities, they can provide insights into how 
ecosystems are structured in relation to abiotic and biotic 
drivers (Albrecht et al. 2018) and could underpin predic-
tive models (Shmueli 2010) of the vulnerability of mountain 
ecosystems to environmental changes.

Trait-based approaches have also become prominent 
in dynamic vegetation (DVM, Scheiter et al. 2013; Sak-
schewski et al. 2016) and land surface models (LSM, Wulls-
chleger et al. 2014; Bonan and Doney 2018; Chen et al. 
2020). These modeling approaches are complementary to 
trait-based frameworks, because they can directly link the 
functional community composition to ecosystem functions 
such as water cycling or biomass production (Díaz et al. 
2019). LSMs that include leaf response traits of a few global 
plant functional types (PFTs) improve the plant community 
response with regard to ecosystem-atmosphere exchanges 
of matter, energy, and water compared to LSMs without 
considering trait diversity (Bonan et  al. 2012). Further 
improvements are possible by replacing a-priori selected 
PFTs by functional trade-offs with traits related to plant 
anatomy, nutrient status, and physiology. The functional 
trade-offs determine if plant strategies (e.g., preferential 
allocation of carbon to fine roots) are more effective under 
climate change compared to other plant strategies (Pavlick 
et al. 2013). Recently, trait diversity calculated from global 
datasets (e.g., TRY, Kattge et al. 2020) was included into a 
DVM to assess the resilience of Amazonian rainforests to 
climate change (Sakschewski et al. 2016). Yet, such trait 
data are hardly available for highly biodiverse ecosystems 
in high mountains. In addition, simulations of community 
responses benefit from the implementation of biotic pro-
cesses into LSMs (Haverd et al. 2018; Jiang et al. 2019). To 
improve the simulation of ecosystem-atmosphere feedbacks, 
LSMs must be coupled to atmospheric models (e.g., Forrest 
et al. 2020). While considerable progress was achieved in 
simulations of the community response, more independent 
trait data from field observations and remote sensing are 
needed to test the models (Hacker et al. 2018).

However, such data are in general hardly available for 
tropical mountain ecosystems. Based on more than 20 years 
of interdisciplinary research, we have collected a compre-
hensive stock of data on abiotic conditions, functional 
traits, biotic processes, and ecosystem functions in a tropi-
cal mountain rain forest of southern Ecuador to overcome 
this deficit (Lotz et al. 2012). Data were acquired by field 
surveys, ecological experiments, and remote sensing within 
previous research units such as the RU816 “Biodiversity and 
Sustainable Management of a Megadiverse Mountain Eco-
system in South Ecuador” (Bendix et al. 2013) and the inter-
disciplinary knowledge transfer program MRp|SE “Platform 
for Biodiversity and Ecosystem Monitoring and Research 
in South Ecuador” (Bendix and Beck 2016). The aim of the 
new research unit RESPECT (Environmental changes in bio-
diversity hotspot ecosystems of South Ecuador: RESPonse 
and feedback effECTs) is to complement this unprecedented 
long-term dataset and, based on that, to develop a framework 
for projecting ecosystem changes in mountain ecosystems 
through the combination of a trait-based REF and a new 
biodiversity-informed LSM. Here, we present the concept 
and design of the framework, new data sources, and exem-
plary results.

Materials and methods

General framework

We propose a research framework for projecting ecosystem 
changes in mountain ecosystems that consider functional 
diversity and biotic processes. Such approaches are lacking 
due to the difficulty to collect local trait data for many taxa in 
highly diverse mountain ecosystems. Our framework com-
prises four main components (Fig. 1): (I) the collection of 
field data within a sampling design to quantify the variation 
of abiotic conditions, functional traits, and biotic processes 
along environmental gradients; (II) a statistical analysis of 
these data in a trait-based REF to identify key functional 
traits representative for generalizing across communities 
and parameterizing biotic processes; (III) the integration 
of key functional traits and relevant biotic processes into a 
biodiversity-LSM; (IV) testing the biodiversity-LSM with 
independent data.

The research framework can be used for (1) describing 
the complexity of mountain ecosystems and (2) projecting 
their response to environmental changes. A plot design is 
needed to capture the temporal response of ecosystems to 
environmental changes using a space-for-time approach 
(França et al. 2016). The REF uses data of abiotic condi-
tions as drivers, and evaluates their direct and indirect effects 
on trait composition and biotic processes. The identified 
functional traits and their relationship to biotic processes 
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are integrated into the biodiversity-LSM. The data on abi-
otic drivers or climate change scenarios are used to force, 
and the trait composition data to parameterize the model. 
Likewise, important biotic processes identified by the REF 
will be implemented as new modules in the biodiversity-
LSM (Vinatier et al. 2016). To adapt it to the complexity of 
a mountain ecosystem, models for ecosystem–atmosphere 
transfer, vegetation dynamics, and soil water need to be cou-
pled (Davies-Barnard et al. 2020). Generating a biodiversity-
LSM does not strive to represent all species, which is impos-
sible in a tropical biodiversity hotspot with more than 100 
tree species  ha−1. Instead, it aims at representing the trait 
diversity and relationships between traits across species to 
capture relevant biotic processes (e.g., herbivory and seed 
dispersal). The quality of the biodiversity-LSM is tested by 
independent data from our plots, remote sensing, or col-
lected in ecological field experiments.

An example for mountain ecosystems

We use a tropical mountain forest located in the SE-Andes 
of Ecuador (Beck et al. 2019) with its unique biodiversity 
(Homeier et al. 2010) as a showcase for our framework, 
which is representative to other high mountain area. The 
responses of this ecosystem to climate change is due to 
its complexity not well understood (Morueta-Holme et al. 
2015), because climate change not only leads to warmer 
temperatures (Peters et al. 2013), but also to changing rain-
fall (e.g., Buytaert et al. 2010), associated declines in soil 
moisture, and changing nutrient deposition (Wilcke et al. 

2013, 2019). Additionally, the natural forest is threatened by 
deforestation (Curatola Fernández et al. 2015; Tapia-Armi-
jos et al. 2015). The overall aim of developing the research 
framework is to project the response of the tropical mountain 
forest and its anthropogenic replacement ecosystems, in this 
case pasture, to climate change. We focus on two ecosystem 
target functions, i.e., (1) biomass production and (2) water 
fluxes. Biomass production is important to produce pasture 
and timber products to cover the livelihoods of the local pop-
ulation (Knoke et al. 2014, 2016). Furthermore, mountain 
forest ecosystems are important for carbon sequestration to 
mitigate  CO2-induced climate change. The water exchange 
between ecosystem and atmosphere (in form of latent heat 
flux by evapotranspiration ET) is an essential proxy for 
biologically induced changes in the ecosystem’s water bal-
ance due to climate and land-use changes (e.g., Silva et al. 
2017). Because the quantity of ET determines how much 
groundwater and overland flow are generated, its response 
to environmental change is a key for potable water supply 
and hydropower generation (Carvajal et al. 2019). Thus, our 
main objective is how these two target functions are affected 
by climate and land-use changes through changes in com-
munity composition in respect to response and effect traits. 
Climate and land-use change have been shown to reduce trait 
diversity in our area. However, trait diversity stabilizes biotic 
processes and ecosystem functions by functional redundancy 
in the community (Santillán et al. 2018). Functional traits 
also mediate biotic processes, such as herbivory and seed 
dispersal (Werner and Homeier 2015; Quitián et al. 2019). 
Thus, we hypothesize that including key functional traits 

Fig. 1  General design of 
the research framework: (I) 
intensive field sampling will 
provide data to (II) identify the 
functional trait composition 
and quantify biotic processes 
within a response–effect frame-
work (REF) that (III) will be 
implemented (red arrow from II 
to III) into a biodiversity-LSM 
(land surface model). Independ-
ent test data (e.g., from experi-
mental nutrient addition or 
remote sensing) (IV) are used to 
test REF and biodiversity-LSM 
results. Results are compared 
to assess their confidence (red 
arrow from III to II)
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and biotic processes in a state-of-the-art LSM will result in 
a biodiversity-LSM that realistically projects changes of the 
target functions and the resistance of complex ecosystems 
under climate change.

Intensive field sampling on joint plots

We implemented a joint plot design, covering the elevational 
and land-use gradients in our study area, with 18 one-hec-
tare plots distributed from 1000 to 3000 m a.s.l. in natural 

forests and pastures (Fig. 2). We collected data on abiotic 
conditions, functional traits, and biotic processes (Table 1). 
Initially, we selected a-priori defined PFTs based on specific 
leaf area (SLA) and wood-specific gravity (WSG), which are 
not only relevant for ecosystem processes in our study area 
(Homeier et al. 2010; Báez and Homeier 2018), but have 
also been used to estimate biomass production on a global 
scale (Díaz et al. 2016). Analyses of these traits and relation-
ships between traits revealed that trait variation is rather con-
tinuous in the natural forest ecosystem. We therefore used 

Fig. 2  The coherent plot system comprised 18 one-hectare plots 
that were distributed along an elevational gradient in natural forests 
and pastures. On the plots, abiotic data, functional traits (SLA spe-
cific leaf area, WSG wood-specific gravity), tree abundance, and 

biotic process data were recorded on predetermined plant species 
for a-priori defined plant functional types (PFT). Independent field 
and remote-sensing data were recorded for the two target functions 
(Examples in the non-comprehensive list to the right.)

Table 1  Abiotic drivers, functional trait data, biotic processes, and independent test data for the two target ecosystem functions (TF)

Abiotic drivers Functional traits Biotic processes Independent test data

Climate variables Leaf optical traits (radiances, indices) NPP TF water fluxes
Atmospheric deposition Leaf N (C/N), leaf N fraction in RubisCO Tree growth Water/energy fluxes (Ecov)
Soil physics Root (C/N) Root water uptake ET (RS, experiments)
Soil water and leaching Leaf chlorophyll content Tree water conductance
Soil chemistry (mainly N, P) SLA Sapflow TF biomass production

Leaf thickness Photosynthesis Carbon flux, NEE (Ecov)
Leaf palatability Plant recruitment Ecosystem respiration Reco (Ecov)
Fruit and seed traits Herbivory Biomass and productivity (RS, experiments)
WSG Seed dispersal LAI, VIs (RS)
Body size and shape, morphometric traits 

(arthropods, birds)
Feeding guild (arthropods, birds)
Water use efficiency (WUE)
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Fig. 3  The approach relies on three data types: a trait data, used to 
describe trait diversity in the biodiversity-LSM (land surface model) 
and for REF (response–effect framework) analyses. SLA (specific 
leaf area) values of 52 tree species (8 replicates) revealed on average 
higher values at the lowest altitude (1000 m a.s.l.) (full gray line), at a 
high average and interspecific variation along the entire elevation gra-
dient (dashed lines). Many other functional traits were correlated with 
SLA, so we used it as one key trait (III Figs. 1, 5) for the REF and the 
biodiversity-LSM. b–c Data from hydro-climate stations (b pasture, 

c forest; at 2000  m a.s.l.) such as soil water content (SWC), show-
ing distinct differences between forest and pasture, and precipitation 
were used for model forcing and as covariates in the REF analyses (II 
and III Fig. 1). d–e Independent Eddy covariance flux data (d evapo-
transpiration ET, net-ecosystem exchange NEE) and measured sur-
face energy fluxes (e sensible H, latent LE, and ground heat flux G) 
were used for testing of the biodiversity-LSM (IV in Fig. 1), showing 
higher ET over the forest (F; blue dashed line) during daylight than 
over pastures (P; full blue line) and differences in NEE (green lines)
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the full variation of traits in the biodiversity-LSM instead 
of discrete PFTs normally used in LSMs. Nevertheless, an 
a-priori PFT definition was important for sampling func-
tional traits of representative tree species, as sampling all 
of the > 1000 tree species occurring in the area would have 
been probative time consuming. For four representative tree 
species of each PFT (52 species and 13 PFTs), we quantified 
trait data (e.g., SLA, Fig. 3a) which are related to both target 
functions in REF analyses and LSMs (e.g., Paulick et al. 
2017; Table 1). Furthermore, we collected data on abiotic 
drivers with a high temporal resolution on the plots (Fig. 3, 
Table 1). Selected abiotic drivers (e.g., irradiance) and func-
tional traits (e.g., photosynthetic quantum use efficiency) 
were collected from canopy towers that are available for one 
plot per elevation in the natural forest. Besides the functional 
trait data for PFTs, we collected species composition and 
functional trait data of arthropods and birds, such as body 
size, feeding guild, and morphometric properties (e.g., San-
tillán et al. 2018; Quitián et al. 2019; Table 1).

The biodiversity‑land surface model (LSM)

Instead of using an existing state-of-the-art LSM, we cou-
pled and improved three models which cover the relevant 
compartments of the ecosystem to establish the biodiversity-
LSM (Fig. 4): The dynamic vegetation model Lund–Pots-
dam–Jena General Ecosystem Simulator LPJ-GUESS (Smith 
et al. 2011, 2014), the Catchment Modeling Framework 
CMF (Kraft et al. 2011; Windhorst et al. 2013), and the 
Community Land Model CLM (Silva et al. 2012; Hurrell 
et al. 2013). The LPJ-GUESS model, where trait compo-
sition and biotic processes are implemented, includes a 

detailed representation of tree population dynamics and the 
simulation of individual trees. In our new version, each indi-
vidual has a specific trait value and the community trait com-
position emerges via ecological sorting (individuals with the 
best adapted traits outcompete other species; Sakschewski 
et al. 2015). To reduce the complexity of the highly diverse 
ecosystem, we drew randomly key traits for each established 
individual from a uniform distribution (Fig. 5). We used 
SLA and WSG, traits that are closely correlated to other 
traits (Fig. S1 and Table 1) needed for the biodiversity-LSM. 
Correlations can be derived using trade-off relationships to 
the local key traits (Fig. 5). The first implementation uses 
the dependent local traits: (1) carbon-to-phosphorus (C:P) 
(2) and carbon-to-nitrogen (C:N) concentration ratios in 
plant tissue related to the key trait SLA. Other relationships 
(e.g., leaf longevity) are still relying on global trait databases 
(TRY; Kattge et al. 2020) or literature surveys, but will be 
also replaced by local plot data. Regarding biotic processes, 
a module herbivory is implemented as energy transforma-
tion through local herbivore communities following Wiegert 
and Petersen (1983). Main elements of the module are (1) 
the leaf input to herbivores by removing a percentage of the 
total individual plant leaf mass and (2) respiration losses of 
leaf carbon through herbivore metabolism. Seed dispersal 
is the other process of biotic interaction which is generally 
implemented in the biodiversity-LSM. Both modules, how-
ever, must be locally adapted with local plot data and results 
from the REF. The final biodiversity-LSM shall be used to 
project the resistance of the ecosystem against environmen-
tal changes by forcing the model with scenarios of climate 
change for both, the natural forest and the pasture system. 
The comparison of simulations will unveil the combined 

Fig. 4  The biodiversity-LSM (land surface model) includes LPJ-
GUESS as the core model, where the essential biotic processes have 
been or will be implemented, CMF (Catchment Modeling Frame-
work), offering the best representation of soil water processes and 
CLM (Community Land Model), and calculating water and energy 
fluxes between the ecosystem and the atmosphere. LPJ-GUESS and 
CLM are using soil water from CMF. CLM is parameterized by the 

change of vegetation and community trait composition from LPJ-
GUESS. For the natural forest, all PFT trait data of the plots are used 
in LPJ-GUESS as a trait diversity continuum. To simplify parameteri-
zation in the highly diverse mountain forest, trade-off relationships 
between key (SLA = specific leaf area; WSG = wood-specific grav-
ity) and dependent traits (e.g., leaf C:N ratio) are derived (Fig. 5 for 
details)
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effects of climate and land-use changes on the resistance of 
the target functions.

Results and conclusion

Response–effect framework (REF)

In two examples, we used the REF to assess the relevance 
of trait data from the actual plot system for quantifying 
biotic processes that are important for our target functions 
(e.g., NPP). Such analyses were done to identify func-
tional traits that can be generalized across communities 
and are relevant to parameterize biotic processes. We used 

community-weighted mean (CMW) trait values (plot-level 
trait values weighted by species abundance) of specific leaf 
area (SLA) to analyze their importance for the ecosystem 
function biomass production (Fig. 6a) as well as trait values 
(SLA) of the above-mentioned individual trees of 52 species 
within plots to unveil their importance for the biotic process 
herbivory (Fig. 6b). We used structural equation models to 
estimate direct and indirect effects of abiotic drivers (mean 
annual temperature MAT), functional trait diversity (SLA) 
on biotic processes (herbivory), or our target function (NPP). 
We found a direct and positive effect of increasing tempera-
tures on the CWM of SLA as well as a direct positive asso-
ciation between the CWM of SLA and aboveground NPP 
(Fig. 6a). Similarly, we observed a direct and positive effect 

Fig. 5  Strategy for implementing trait variability in our version of 
LPJ-GUESS to consider the high plant diversity for the model, based 
on local trait and literature data. Random independent key traits 
(dark blue) are drawn from a uniform distribution at establishment, 

from which several other dependent traits (green, red) are calculated 
using trade-off–relationships (left panels using the key trait specific 
leaf area; lower right by applying wood-specific gravity). Solid curves 
depict average fits; dashed lines depict standard errors
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of increasing temperatures on the SLA of the 52 tree species. 
In contrast, we found a direct negative effect of increasing 
temperature on herbivory (leaf area loss of the 52 study spe-
cies). We did not see an association between SLA and her-
bivory of tree individuals (Fig. 6b). These findings highlight 

that effects of abiotic drivers can be both direct and indirect 
depending on the functional trait composition.

Performance of the biodiversity‑land surface model

Testing the model is and will be done with independent data 
that are not used for parameterizing the model (Fig. 1IV.). This 
can be observational data of the target functions from the plots 
(e.g., ET in Fig. 3d), field data of which were collected dur-
ing previous research (e.g., biomass; Wallis et al. 2019), and 
data of ecological experiments (e.g., nutrient manipulation 
experiments; Homeier et al. 2017). Using such data (here NPP 
from Leuschner et al. 2013), we tested the improvement of the 
biodiversity-LSM at its current state of development (Fig. 4, 
5). For this, we defined the minimum and maximum ranges of 
the key trait SLA (Fig. 7a), and their relationships with other 
traits using the local trait data (here leaf C:N ratio). In a first 
scenario (Fig. 7b, left), we run the simulations using the low 
diversity mode, in which the independent traits were fixed to an 
average value for the elevational gradient. This represents the 
approach commonly used by state-of-the-art LSMs, which do 
not implement trait diversity. The results underestimated NPP, 
especially for the highest elevation site. In contrary, the model 
with local trait diversity driven by local climate, nutrient avail-
ability, and trait relationships was able to correctly predict the 
target function NPP (Fig. 7b right). Nutrient limitation of both, 
nitrogen and phosphorus, was identified as a key abiotic driver 
to represent the observed changes of biomass production. 
When running the same simulations using globally defined 

(a) (b)

Fig. 6  Structural equation model showing direct and indirect effects 
of mean annual temperature (MAT), community-weighted mean of 
specific leaf area (CWM [SLA]), or individual SLA  (cm2/g, meas-
ured for 355 trees with 4–8 individuals per species) on a above-
ground biomass production (NPPa, estimated using stem increment 
and litter production) and b herbivory [%]. Dashed arrows depict 
omitted effect in partial mediated models. Effect sizes for significant 
effects are given next to arrows with asterisks demarking the sig-
nificance level (**> 0.001 < ***> 0.000). For each endogenous vari-
able, the relative amount of explained variance is given. We used the 
 Chi2-difference-test to assess whether our saturated model is more 
or less supported than the partial mediation model. For both models, 
the  Chi2-difference-test supported the partial mediation model (NPP: 
 Chi2 = 5.25; df = 2; p value = 0.072; herbivory:  Chi2 = 5.99; df = 2; p 
value = 0.050, with similar results in the full models)

Fig. 7  Examples for independent testing of the local adaptation of 
LPJ-GUESS by simulating net primary production (NPP) for three 
elevation sites. a Global (TRY) and local SLA to C:N ratio relation-
ships where the solid curves represent the average fits, dashed lines 
the standard error. b The low diversity simulation (left) uses indi-
viduals with a constant average SLA. Furthermore, simulations with 
global (center) and local (right) SLA to leaf carbon-to-nitrogen ratio 

(C:N) relationships are compared. The test against independent aver-
age NPP data (gray points/lines) showed best performance using local 
trait relationships. The model was forced by local temperature, pre-
cipitation, radiation, and nutrient input values (i.e., deposition and 
weathering rates) and was run for 700  years on a 10-hectare area, 
with the results derived as an average of the last 200 years
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trait relationships derived from the TRY database (Kattge 
et al. 2020), model performance was substantially reduced for 
the target function biomass production (NPP, Fig. 7b center). 
The results demonstrate the importance of including local trait 
diversity to gain improved biodiversity-LSMs.

Conclusion

The lack of available local data on abiotic drivers, func-
tional traits, and the missing integration of biotic processes 
into LSMs have hampered scientific progress in project-
ing community answers to global change, particularly in 
highly diverse ecosystems. We propose that integrating 
detailed data on functional trait diversity and biotic pro-
cesses of complex ecosystems into statistical and LSM 
modeling approaches will advance understanding of the 
functional importance of biodiversity and projections 
of the consequences of global change for highly diverse 
mountain ecosystems. The approach centered on the biodi-
versity-LSM also allows to project ecosystem–atmosphere 
feedbacks. Projections on these feedbacks, e.g., water 
vapor exchange at the ecosystem–atmosphere interface or 
carbon sequestration through biomass growth under cli-
mate change, require a local representation of dominating 
trait composition changes and biotic processes. These local 
feedbacks determine whether ecosystem changes con-
tribute to an acceleration or mitigation of global climate 
change impacts on ecosystems and are thus essential in the 
biodiversity-LSM part of our framework. Thus, we provide 
the conceptual workflow and framework that can be used 
to make projections of likely responses of tropical moun-
tain ecosystems to global change scenarios. We developed 
this research framework from our perspective on tropical 
mountain rainforests, but also point out that it can be used 
and developed further for a wide range of ecosystems. 
To transfer the research framework to other ecosystems, 
our examples showed that a dataset of locally collected 
essential variables is necessary. These comprise abiotic 
drivers such as temperature that depict the environmental 
gradient for the REF as well as for model forcing, plant 
and animal functional traits, vegetation characteristics, 
and quantitative data on biotic processes that are relevant 
for the respective target functions of the ecosystem. We 
believe that such integrated approaches, combining field 
measurement on functional traits, biotic processes, as well 
as ecosystem–atmosphere exchanges with statistical and 
process-based modeling are necessary to fundamentally 
advance our ecosystem understanding.
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Supplementary material 

 

Fig. S1  Descriptive principal component analysis based on the correlation matrix across species 

to illustrate relationships between traits. This analysis is based on nine leaf traits (AL refers to 

foliar Al, C:N to foliar C/N ratio, DMC to dry matter content, N to foliar N, N:P to foliar N/P ratio, 

P to foliar P, SLA to specific leaf area, thick to leaf thickness, tough to leaf toughness) recorded 

for 52 tree species at three elevation levels (colour as in Fig. 2, 3a and 7b). For simplicity we have 

not considered the phylogeny of the tree species. 


