Publications


- Publication type: - sort by:


Found 8 publication(s)

  1. 1

Contreras, P.; Orellana-Alvear, J.; Muñoz, P.; Bendix, J. & Celleri, R. (2021): Influence of Random Forest Hyperparameterization on Short-Term Runoff Forecasting in an Andean Mountain Catchment. Atmosphere 12(2), 1-16.
Kühnlein, M.; Appelhans, T.; Thies, B. & Nauss, T. (2014): Improving the accuracy of rainfall rates from optical satellite sensors with machine learning — A random forests-based approach applied to MSG SEVIRI. Remote Sensing of Environment 141, 129–143.
Urgilés, G.; Celleri, R.; Trachte, K.; Bendix, J. & Orellana-Alvear, J. (2021): Clustering of Rainfall Types Using Micro Rain Radar and LaserDisdrometer Observations in the Tropical Andes. Remote Sensing 13(5), 1-22.
Turini, N.; Thies, B.; Horna, N. & Bendix, J. (2021): Random forest-based rainfall retrieval for Ecuador using GOES-16 and IMERG-V06 data. European Journal of Remote Sensing 54(1), 117-139.
Meyer, H.; Lehnert, L.; Wang, Y.; Reudenbach, C.; Nauss, T. & Bendix, J. (2017): From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information?. International Journal of Applied Earth Observation and Geoinformation 55, 21-31.
Schulz, M.; Li, C.; Thies, B.; Chang, S. & Bendix, J. (2017): Mapping the montane cloud forest of Taiwan using 12 year MODIS-derived ground fog frequency data. PLOS ONE 12(2), 1-17.
Turini, N.; Thies, B. & Bendix, J. (2019): Estimating High Spatio-Temporal Resolution Rainfall from MSG1 and GPM IMERG Based on Machine Learning: Case Study of Iran. Remote sensing 11(19), 2307.
Orellana-Alvear, J.; Celleri, R.; Rollenbeck, R. & Bendix, J. (2019): Optimization of X-Band Radar Rainfall Retrieval in the Southern Andes of Ecuador Using a Random Forest Model. Remote Sensing 11(14), 1632.
  1. 1


Quick search

  • Publications:
  • Datasets: