Supplemental material for

"Evaluation of the Penman-Monteith (FAO 56 PM) method for calculating reference evapotranspiration using limited data: Application to the wet *páramo* of southern Ecuador" by Mario Córdova, Galo Carrillo-Rojas, Patricio Crespo, Bradford Wilcox, and Rolando Célleri, published in *Mountain Research and Development* 35(3), 2015. (See http://www.bioone.org/toc/mred/35/3)

APPENDIX S1. The annual cycle of R_a and its influence on R_s estimates.

The procedure for estimating solar radiation (R_s) is based on temperature and extraterrestrial radiation (R_a). For these latitudes, R_a exhibits a distinct annual cycle, which imposes an annual cycle on the estimated values of R_s . However, as seen in Figure S1 below, R_s in the wet *páramo* is constant throughout the year because of the compensating effect of the lack of cloud cover during the period when R_a is low. Therefore, R_s estimates are better from May to September because lower R_a yields lower R_s .

FIGURE S1 Solar radiation (R_s) , estimated R_s , and extraterrestrial radiation (R_a) for the Toreadora site during 2013.