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Abstract
Conversion of tropical forests is among the primary causes of global environmental 
change. The loss of their important environmental services has prompted calls to in-
tegrate ecosystem services (ES) in addition to socio-economic objectives in decision-
making. To test the effect of accounting for both ES and socio-economic objectives 
in land-use decisions, we develop a new dynamic approach to model deforestation 
scenarios for tropical mountain forests. We integrate multi-objective optimization of 
land allocation with an innovative approach to consider uncertainty spaces for each 
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1  | INTRODUC TION

Ecosystem functions (EF) are ecological processes and structures that 
determine the capacity of ecosystems to provide ecosystem services (ES; 
Groot, Wilson, & Boumans, 2002). Integrating EF into land-use decisions 
is an important challenge to secure the provisioning of ES (Daily et al., 
2009; Defries, Foley, & Asner, 2004; Foley et al., 2007; Goldstein et al., 
2012; Nelson et al., 2009; Schößer, Helming, & Wiggering, 2010). ES re-
sult from EF that support human well-being (Fisher, Turner, & Morling, 
2009) and have become an important utilitarian argument to justify 
nature conservation (Balmford et al., 2002; European Union, 2013; 
Fisher & Brown, 2015; MEA, 2005; Polasky et al., 2012). Payments for 
ES are seen as an innovative means to curb deforestation and to reduce 
the global loss of biodiversity (Wunder et al., 2018). However, while the 
concept of ES has stimulated an enormous amount of research, major 
challenges still remain regarding how to use this scientific knowledge to 
support real-world decision-making (Bennett et al., 2015; Guerry et al., 
2015; Martinez-Harms et al., 2015; Ruckelshaus et al., 2015). Despite 
recent concepts linking ES with biodiversity to support conservation and 
sustainable use of natural resources (Díaz et al., 2018), few studies have 
gone beyond conceptual synthesis to quantify the consequences for na-
ture conservation of integrating ES into decision-making, especially for 
tropical landscapes. For example, it is unclear how enhancing the capac-
ity of a tropical landscape to provide ES would influence deforestation.

Deforestation still poses a major global challenge (Bebbington 
et al., 2018). The current level of forest loss driven by human ac-
tivities could cause species extinction rates of 18%–40% by 2100, 
depending on whether the immediate protection of existing hab-
itats in biodiversity hotspot areas is achieved (Pimm & Raven, 
2000). Yet, many biodiversity scenarios only focus on the impact 
of climate change and ignore the influence of land-use/land-
cover (LULC) change (Titeux et al., 2016). Tropical deforestation 
is a large-scale phenomenon and part of global change (Geist & 
Lambin, 2002). It is a relevant example for considering the influ-
ence of multiple ES on land-use decisions. Policies to reduce defor-
estation have been studied extensively (Angelsen, 2010) because 
deforestation and forest fragmentation can have far-reaching neg-
ative consequences. However, forest clearing may also sustain the 
livelihoods of local people, particularly in the tropics, where small-
scale farming prevails (Affholder, Poeydebat, Corbeels, Scopel, & 
Tittonell, 2013).

Given the global importance of tropical deforestation, simulating de-
cisions about the level of deforestation is important to obtain plausible 
future LULC trajectories for biodiversity or climate change scenarios and 
to test how decision-making may be improved to mitigate deforestation. 
This study investigates under which conditions accounting for ES in 
simulated land-use decision-making can contribute towards conserving 
tropical forests. Our study also attempts to overcome several shortfalls 

objective. These uncertainty spaces account for potential variability among decision-
makers, who may have different expectations about the future. When optimizing 
only socio-economic objectives, the model continues the past trend in deforestation 
(1975–2015) in the projected land-use allocation (2015–2070). Based on indicators 
for biomass production, carbon storage, climate and water regulation, and soil quality, 
we show that considering multiple ES in addition to the socio-economic objectives 
has heterogeneous effects on land-use allocation. It saves some natural forest if the 
natural forest share is below 38%, and can stop deforestation once the natural for-
est share drops below 10%. For landscapes with high shares of forest (38%–80% in 
our study), accounting for multiple ES under high uncertainty of their indicators may, 
however, accelerate deforestation. For such multifunctional landscapes, two main ef-
fects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the 
levels of the indicators and (b) increased landscape diversification to maintain multi-
ple ES, reducing the proportion of natural forest. Only when accounting for vascular 
plant species richness as an explicit objective in the optimization, deforestation was 
consistently reduced. Aiming for multifunctional landscapes may therefore conflict 
with the aim of reducing deforestation, which we can quantify here for the first time. 
Our findings are relevant for identifying types of landscapes where this conflict may 
arise and to better align respective policies.

K E Y W O R D S

biodiversity, ecosystem services, Ecuador, land allocation, landscape restoration, robust 
optimization
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associated with previous tropical LULC change models, including lack of 
transparency and validation (Rosa, Ahmed, & Ewers, 2014).

Various studies have used optimization approaches to inte-
grate a variety of ES in land-use decision-making (Bagdon, Huang, & 
Dewhurst, 2016; Estrella, Cattrysse, & van Orshoven, 2014; Kaim, 
Cord, & Volk, 2018). Results of such studies have shown that incor-
porating ES can substantially change the allocation of land to differ-
ent LULC types (Bateman et al., 2013). However, such optimization 
approaches have rarely tested the consequences of optimizing mul-
tiple ES in conjunction with socio-economic aspects of tropical defor-
estation. This is an important gap because tropical forests maintain 
important ES which are not accounted for in private land-use deci-
sions (Foley et al., 2007). To make informed decisions about tropical 
land-use, it is necessary to better align short-term private benefits 
(e.g. derived from agricultural commodities) with the ecological con-
sequences of land-use change (Defries et al., 2004; Foley et al., 2007; 
Guerry et al., 2015).

While higher levels of biodiversity usually enhance EF (Binder, Isbell, 
Polasky, Catford, & Tilman, 2018; Cardinale et al., 2012; Soliveres et al., 
2016) and ES (Isbell et al., 2011; Rey Benayas, Newton, Diaz, & Bullock, 
2009) at the plot scale, considering ES at the landscape scale does not 
necessarily help to conserve biodiversity. Some ES may be best pro-
vided by less biodiverse LULCs managed specifically for those ES. For 
example, Dawson and Martin (2015) have shown that tropical forests in 
western Rwanda failed to provide some key services, such as firewood 
and construction timber, which are better provided by non-native forest 
plantations. Ferreira et al. (2018) demonstrated how focusing on carbon 
sequestration may fail to protect the most biodiverse tropical forests 
because less biodiverse natural forests have higher carbon stocks. Thus, 
a clear understanding of the consequences of considering multiple ES 
in decision-making for the fate of natural tropical forests is still lacking.

Modelling the consequences of considering multiple ES and 
socio-economic objectives simultaneously in decision-making is 
challenging due to the uncertainties associated with measuring and 
predicting future provision of these ES and socio-economic ben-
efits. Most multiple-criteria and optimization-based approaches 
do not satisfactorily address the possible influence of uncer-
tainty on land-use decisions (Knoke et al., 2016), which may un-
dermine ‘science-based’ decision-making (Hamel & Bryant, 2017). 
Uncertainty is more commonly considered in economic studies 
(Matthies, Jacobsen, Knoke, Paul, & Valsta, 2019). Some authors 
show that uncertainties may provide an incentive for land owners 
to conserve (agro-) biodiversity as a means to obtain natural insur-
ance (Baumgärtner, 2007; Baumgärtner & Quaas, 2010; Di Falco 
& Perrings, 2005). The conservation of biodiversity may thus con-
stitute an insurance value (Finger & Buchmann, 2015). However, it 
is difficult to predict how the typical behaviour of potentially risk-
averse decision-makers will influence the actual conservation of 
biodiverse natural ecosystems.

Our study hypothesizes that the following conditions will lead 
to scenarios with reduced deforestation rates: (a) considering mul-
tiple ES in addition to socio-economic aspects in land-use decisions 
and (b) accounting for increasing uncertainty in the level of ES.

2  | MATERIAL S AND METHODS

2.1 | The concept: Modelling three decision-making 
perspectives

Our study simulates real-world decision-making about allocating 
tropical land to LULC types, building on mathematical programming 
methods (Schreinemachers & Berger, 2006). We use a reference 
point method to consider multiple objectives (Estrella et al., 2014) 
combined with robust optimization to integrate uncertainty about 
future conditions (Ben-Tal, El Ghaoui, & Nemirovski, 2009). A ref-
erence point is the most desired value for an objective (seen as an 
ideal point; see Estrella et al., 2014), which can be achieved for a sin-
gle objective and a single decision-maker, but not necessarily for all 
objectives and all decision-makers simultaneously (Yu, 1973; Zelany, 
1974). Therefore, our model seeks a compromise that reduces trade-
offs between the different objectives but also accounts for the 
attitudes of different decision-makers.

In our model, decision-makers determine the optimal land-use 
allocation based on the ability of LULC types to contribute to various 
objectives (input values from here onwards). For example, for the ob-
jective carbon in planta, we have measured input values ranging among 
LULC types between 12.5 and 125.2 Mg/ha. The decision-makers, 
however, are uncertain about the extent to which the LULC types can 
meet these objectives in the future. Our approach accounts for this 
uncertainty through the so-called uncertainty spaces, which contain a 
range of possible input values. When determining the optimal land-use 
allocation we rule out compensation among objectives: higher perfor-
mance in one objective cannot compensate for poor performance in 
another. Instead, we minimize the maximum distance between the ref-
erence point and the actually achieved level across all objectives and all 
the input values contained in the uncertainty spaces (Zhang, Liang, & 
Zhang, 2018). Our aim is to find a compromise for future land allocation 
that best satisfies all objectives under uncertainty (see Methods S1 for 
further justification of our distance function).

We apply the approach to the widespread problem of pasture 
expansion into tropical forests, which is common in South America 
(Garrett et al., 2018; Wassenaar et al., 2007). While many studies use 
secondary data, we integrate in situ data in our model, that is, plot-
level field, modelling and survey data of long-term ecological, social 
and economic studies in a real landscape in southern Ecuador (Knoke 
et al., 2014; Richter, Beck, Rollenbeck, & Bendix, 2013). This landscape 
is located in the transition zone of the Tumbes-Chocó-Magdalena and 
the Tropical Andes hotspot of vascular plant (Brummitt & Lughadha, 
2003) and bird species richness (Liede-Schumann & Breckle, 2008; 
Orme et al., 2005; Methods S2). Most of this biodiversity is harboured 
by native mountain rainforests (Richter et al., 2013) and is threatened 
by deforestation activities which are common in the whole Andes 
(Aguirre, Palomeque, Weber, Stimm, & Günter, 2011). These circum-
stances form an ideal opportunity to study the consequences of opti-
mizing multiple ES and socio-economic objectives.

We provide an innovative and dynamic perspective on the re-
lation between the conservation of natural forests and maintaining 



4  |     KNOKE Et al.

multiple ES. Our study extends the static land-use allocation model 
developed previously (Knoke et al., 2014, 2016). While the previ-
ous studies ignored deforestation and the landscape context and 
were limited to a fixed area of abandoned lands, we now consider 
the whole landscape composition and allow for an expansion of 
non-natural land in our optimizations. This is a precondition to 
model deforestation. We assume an initial landscape composition 
comprising 19% abandoned lands, 31% traditional low-input pasture 
and 50% natural forest (based on the land-use in 2015, derived from 
Curatola Fernández et al., 2015 for an area of 25 × 25 km2). We 
also test the impact of different initial landscape compositions on 
deforestation levels. We simulate gradual changes in the landscape 
composition in 5-year time steps, consisting of a reallocation of area 
proportions to various LULC types, where the optimized future 
composition will form a long-term target for decision-makers. Our 
approach is dynamic because it uses the simulated landscape com-
position of the preceding time step to update the current landscape 
composition at the beginning of a new time step (Methods S3).

The model components are summarized in Figure 1. To evalu-
ate and simulate the effect of considering ES in addition to socio- 
economic objectives in land-use decisions, we develop three dif-
ferent decision perspectives. These perspectives represent three 
groups of hypothetical decision-makers, each with a different 
set of objectives representing their preferences. The first group 
considers socio-economic objectives only (SE scenario, Figure 1) 
and obtains the perspective of farmers managing their own land. 
The second group considers both ES and socio-economic objec-
tives (ES-SE scenario, Figure 1), and the third considers biodiver-
sity in addition to the socio-economic objectives (B-SE scenario, 
Figure 1). The direct integration of biodiversity is an alternative 
to aiming at the conservation by integrating multiple ES. We thus 
contrast the decisions resulting from optimizing socio-economic 

objectives with the land-use allocation of two alternative decision 
perspectives, which in addition to the socio-economic objectives 
also consider objectives for either (a) maintaining multiple ES or  
(b) biodiversity conservation.

Within each decision perspective, no objective or group of ob-
jectives has priority over the others: all objectives are weighted 
equally. Weights depend on the individual stakeholder values as-
signed to the different objectives. These values are not static in time, 
differ among stakeholders and are also different between local and 
global scales. While some studies in similar analyses use stakeholder 
based weighting, we have refrained from this as such may lead to 
a strong bias introduced by the involved stakeholders and current 
priorities. We therefore use the arbitrary setting of equal weights 
and test the influence of specific objectives and of weighting sin-
gle indicators higher than others by sensitivity analyses (Figure S1; 
Table S1; see Section 3.5).

Based on the different objectives, each group allocates land to 
seven LULC types (illustrated in Figure 2). These include traditional 
LULC types (Curatola Fernández et al., 2015) as well as alternative 
land-use types that aim to rehabilitate abandoned land or to im-
prove low-input pastures: afforestation either with (native) Alnus 
acuminata Kunth or (exotic) Pinus patula Schltdl. & Cham. and re-
cultivation towards intense pasture management. The ability of the 
LULC types to provide socio-economic benefits or multiple ES, or to 
maintain biodiversity, is quantified through a large number of indica-
tors, which are used as input coefficients in the model (Figure 1) and 
described in Knoke et al. (2014). Specific subsets of these indicators 
also serve as the decision criteria of the three decision perspectives 
(Tables 1‒3). The proportion of land allocated to each LULC type 
under each decision perspective form the choice variables, which 
are optimized according to different objectives as reflected by the 
decision criteria (Figure 1).

F I G U R E  1   Overview of the 
optimization model components. Yellow 
fields represent land-use/land-cover 
(LULC) types and associated decision 
parameters (indicators used to quantify 
objectives and their uncertainty, where 
SEM is the standard error of the mean 
of these indicators). LULC types used 
to rehabilitate abandoned lands or to 
improve low-input pasture are shown 
in blue font. Green fields depict the 
subsets of indicators considered by the 
three decision-making perspectives and 
the components used to simulate the 
decision-making process. The blue box 
outlines the types of results obtained

Decision perspectives
- SE: Considering socio-economic benefits and costs (e.g. farmers)
- ES-SE: Considering ecosystem services and socio-economic 

benefits and costs 
- B-SE: Considering biodiversity conservation and 
socio-economic benefits and costs

Land-use/land-cover types (LULC)
1. Abandoned lands
2. Alnus acuminata plantation
3. Pinus patula plantation
4. Recultivation of intense pasture
5. Low-input pasture
6. New deforestation
7. Natural forest Objectives: Decision criteria (input coefficients)

(number of indicators in parentheses)

Output
- Output coefficients, e.g. achieved landscape level indicator values or distances

SE: Socio-economic 
criteria:
- Net present value (2) 
- Payback periods (2)
- Labour demand (1)
- Social 

preferences (4)

ES-SE: Ecosystem 
service and socio-
economic criteria:
- Carbon relations (3) 
- Climatic and 

hydrological 
regulation (4)

- Soil quality (7)

B-SE: Biodiversity
and socio-economic 
criteria:
- Plant species 

richness (2)

Indicators measuring the contribution
of LULC to the objectives 
9 socio-economic (Tab. 1),
14 ecosystem service (Tab. 2),
2 biodiversity indicators (Tab. 3)
Data sources:
- Modelling
- Field experiments/surveys
- Household surveys

Uncertainty model
- Intervals for each indicator level
- Worst cases defined by SEM

(Tab. 1-3)
- All combinations of best and 

worst cases among all LULC 
types (Fig. S2) form the 
surface of uncertainty spaces

Objective
- Balance achievement of multiple criteria (Fig. 3)
- Minimize the largest distance between best possible and 

achieved landscape level indicator, scaled between 0 and 100%

Choice variables
- Percentages of land allocated to LULC types (landscape scale)

- Development of natural forest cover 2015–2070 (Fig. 6)
- Development of proportions of LULC types 2015–2045 (Fig. 7)
- Changes of short-term deforestation rates 2015–2020 (Fig. 8)
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The simulated decisions of the three perspectives aim for a com-
promise land allocation to improve levels for each single indicator. 
Land is allocated to the seven LULC types with the objective of bal-
ancing the achievement of indicators comprising the relevant decision 
criteria for each perspective (Figure 1). Our optimization procedure 
compares the distances between the most desirable level of each in-
dicator achievable by a single LULC type (set as the reference point) 
and the levels actually achieved by a given landscape composition, 
and then minimizes the largest distance (Diaz-Balteiro et al., 2018; 
Romero, 2001; Stewart, 1992; Tamiz, Jones, & Romero, 1998) across 
all indicators and uncertainty scenarios (see Section 2.3).

Considering uncertainty for each indicator is important 
(Methods S4) as decision-makers have different attitudes towards 

risk (i.e. different risk preferences), which influences their deci-
sion-making. We assume that land-use decisions will build on be-
liefs about, rather than exact knowledge of, future indicator levels. 
The input values to quantify indicator levels cannot be predicted 
with certainty because environmental, market and socio-economic 
conditions change over time. Decision-makers' beliefs about the 
future will vary and depend, among other factors, on their de-
gree of risk-aversion. To account for such uncertainty, we imple-
ment uncertainty spaces through our uncertainty model (Figure 1; 
Figure S2). Uncertainty spaces are represented by discrete scenar-
ios systematically combining best- and worst-case values for each 
indicator for each LULC type based on the mean and standard error 
of the mean (SEM). All uncertainty scenarios are considered simul-
taneously in our optimization to ensure that the simulated future 
land allocation will provide feasible solutions over the whole uncer-
tainty space (Ben-Tal et al., 2009), thus satisfying the requirements 
of a group of decision-makers who would consider the included 
input values.

The model output shows how the allocation of land to the seven 
LULC types changes. This comprises annual deforestation rates over 
a 5-year period (short term) and how the landscape composition and 
the natural forest cover develop over a 30-year period (farmer gener-
ation) and a 55-year period (long term), respectively. We present here 
the results for the 55-year period to allow for comparison with de-
forestation predictions of a stochastic model (Thies, Meyer, Nauss, & 
Bendix, 2014). The longer time period also allows us to analyse the dy-
namics of the modelled loss of natural forest over a longer timeframe.

2.2 | Indicators as decision parameters

Most of the indicators (Tables 1‒3) considered in this study have 
been defined in Knoke et al. (2014). This includes indicators to 
quantify supporting (biomass production, soil quality) and regulat-
ing services (carbon, climate and water), as well as food and timber 
provisioning services, which are economically valued, and the social 
preferences of the local people. In addition to the indicators already 
published in Knoke et al. (2014), in this study, we also integrate indi-
cators for biodiversity and labour requirement. The indicators show 
mainly weak correlations (Table S2).

The selected socio-economic indicators (Table 1) include eco-
nomic return as the net present value (NPV) for two discount rates, 
labour required to establish and maintain the land-use types, and the 
often problematic issue of access to money, considered in the form 
of payback periods (time until the invested money is received back) 
for the two different discount rates. However, we not only consid-
ered economic criteria but also what the farmers would actually 
prefer, by addressing their social preferences for new LULC types. 
Social preferences are indicators representing the cultural benefit of 
the rehabilitation LULC types. They quantify the compatibility of 
each LULC type with tradition and also their contribution to the 
aesthetics of the landscape, or preserving cultural heritage (Knoke 
et al., 2014). The Mestizo farmers of mixed Spanish and indigenous 

F I G U R E  2   Land-use/land-cover (LULC) types (a–g). Abandoned: 
Areas without any active use, which were previously used for 
pasture or where pasture established after deforestation failed 
(resulting in succession areas, e.g. with bracken fern, i.e. Pteridium 
arachnoideum (Kaulf.) Maxon and Pt. caudatum (L.) Maxon). Alnus 
plantation: Afforestation of low-input pasture or abandoned lands 
with Alnus acuminata Kunth as a native tree. Pinus plantation: 
Afforestation with Pinus patula Schltdl. & Cham. as an exotic tree 
species. Intense pasture recultivation: Conversion of low-input 
pasture (with Setaria sphacelata (Schumach.) Stapf & C.E. Hubb. 
ex Moss or Melinis minutiflora P. Beauv.) or abandoned lands to 
pasture with subsequent intense management. Low-input pasture 
(common practice in the study area): pasture with low-input 
management, characterized by low fertilizer and labour inputs. 
New deforestation: conversion of natural forest to low-input 
pasture. This land-use has different socio-economic indicators than 
the existing low-input pastures. For example, upfront revenues 
are received from clearing the timber, but very high labour input 
is required. Natural forest: with low-input management (tropical 
mountain rain forest)

(a) Abandoned

(b) Pinus planta�on 

(c) Low-input pasture

(f) New deforesta�on

(g) Natural forest

(e) Intense pasture
          recul�va�on

(d) Alnus planta�on
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descent and the indigenous Saraguros (Quichua people from the 
highlands of southern Ecuador) participating in the household in-
terviews hold their lands privately. During the interviews, the farm-
ers were asked to rank five of the LULC types: three rehabilitation 
types (intense pasture recultivation and the two types of affor-
estation), low-input pasture and leaving the land abandoned. Each 
was ranked with and without the assumption of receiving subsidies 
(Methods S5).

The selection of the socio-economic indicators was informed 
by previous studies (Angelsen & Kaimowitz, 1999; Börner et al., 
2010; Janssen & van Ittersum, 2007). We use a mix of sources: di-
rect preferences of farmers concerning various LULC types, which 
were recorded in interviews, and calculated indicators, which build 
on household surveys, field experiments and simulations (Table 1). 
Household surveys provided information on market prices and la-
bour requirement, which we combine with productivity data from 
field experiments and simulations (Knoke et al., 2014). This pro-
vides a consistent method to evaluate the economic performance 
of each LULC type, including the new LULC types (e.g. intense pas-
ture recultivation and afforestation) that could not be quantified 

by farmer experience. Farmers were thus not asked directly for the 
performance of LULC types against some indicators, as we wanted 
to quantify these indicators from a neutral perspective. To vali-
date our selection of socio-economic indicators, we compared the 
deforestation rate simulated by the model to past deforestation 
observed in the study area, and to the future deforestation rate 
predicted by a locally valid stochastic model (Thies et al., 2014). 
Here, we assume that a set of socio-economic objectives that pro-
duces a deforestation trend similar to past and predicted defor-
estation rates will best reflect the objectives driving farmers' actual 
decision-making.

Indicators for multiple ES (Table 2; see Methods S5 for more 
details) have also been defined in Knoke et al. (2014) and describe 
carbon relationships, climatic regulation, hydrological regulation and 
soil quality (Table S3). We assume that these EF provide bene-
fits for humans and thus regard them as ES. Carbon relationships 
quantify the uptake of carbon and its accumulation. The indicators 
used, such as biomass production or carbon stored in plants or soils 
(Table 2), quantify primary EF that are a precondition for provision-
ing (food, fodder and timber), regulating (storage of atmospheric 

TA B L E  1   Input values for socio-economic indicators and their uncertainties (quantified by their standard error of the mean, SEM) 
considered in the optimization model to simulate decisions based on socio-economic criteria (SE scenario)

Land-use/land-cover type, l

Indicator, i Unit Abandoned
Alnus 
plantation

Pinus 
plantation

Intense 
pasture 
recultivation

Low-input 
pasture

New 
deforestation

Natural 
forest

Net present value 
(NPV) 5% discount 
ratea

US$/ha 0 (±0) 1,435 (±649) 1,322 (±586) 1,060 (±234) 1,318 (±111) 1,765 (±332) 427 (±73)

NPV 8% discount 
ratea

0 (±0) 619 (±394) 561 (±373) 485 (±132) 1,113 (±93) 1,471 (±321) 343 (±62)

Payback 5% discount 
rateb

Years 0.0 (±0.0) 16.0 (±3.0) 16.0 (±3.0) 10.0 (±2.0) 0.0 (±0.0) 0.3 (±0.8) 0.1 (±0.7)

Payback 8% discount 
rateb

0.0 (±0.0) 16.0 (±4.0) 16.0 (±4.0) 13.0 (±4.0) 0.0 (±0.0) 0.2 (±0.7) 0.1 (±0.6)

Labour requirementb Days ha−1  
year−1

0.0 (±0.0) 9.4 (±1.2) 9.4 (±1.2) 16.6 (±1.1) 4.4 (±0.4) 13.4 (±6.8) 2.0 (±0.3)

Saraguro preference 
without subsidya

Number of 
answers 
with 
preference 
rank 1 or 2

4 (±2) 14 (±3) 12 (±3) 4 (±2) 5 (±2) Not assessed  
(see Methods S5)

Saraguro preference 
with subsidya

0 (±0) 19 (±3) 9 (±3) 8 (±3) 3 (±2)

Mestizo preference 
without subsidya

5 (±2) 19 (±4) 15 (±3) 10 (±3) 12 (±3)

Mestizo preference 
with subsidya

0 (±0) 16 (±3) 17 (±4) 12 (±3) 14 (±3)

Note: The ‘Number of answers with preference rank 1 or 2’ reports how many respondents have rated a LULC type as best or second best during 
interviews. Data are adopted from Knoke et al. (2014) and from additional studies of the authors (Tables S3–S5; Methods S5). SEM, given in 
parentheses, has been used to quantify the uncertainty of socio-economic indicators as the possible undesirable deviation (worst cases) from the 
measured indicator levels for each LULC type, l, and indicator, i. The term ‘Mestizo’ refers to farmers of mixed Spanish and indigenous descent. 
Indigenous Saraguros are Quichua people who traditionally inhabited the Andean uplands of southern Ecuador.
Abbreviation: LULC, land-use/land-cover.
aHigher indicator values are considered better. 
bLower indicator values are considered better. 
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carbon) and life supporting (formation of organic matter to im-
prove soil quality) ES. The ES climate regulation is supported by 
other important EF. Changes in the energy balance, surface rough-
ness and evapotranspiration link the atmospheric to the hydro-
logical function. To quantify such effects, we calculate water and 
momentum fluxes (turbulence production). Hydrological regulation 
is important to assess the potential of LULC types for reducing un-
desired effects of water, such as erosion. These ES are covered by 
the indicators area-specific discharge and overland flow. Indicators 
of soil quality evaluate the long-term soil productivity, capturing 
plant productivity and soil biodiversity. This above information has 
been adopted from Knoke et al. (2014, pp. 3–5), where more de-
tailed information is provided.

Biodiversity indicators quantify vascular plant species richness 
(Table 3). Data for the indicators species richness iChao2 and species 
richness Jackknife2 were obtained by examining vegetation plots 
on natural and anthropogenic sites within the study region (Peters, 
Diertl, Gawlik, Rankl, & Richter, 2010) and were re-evaluated for 
our study. Terrestrial vascular plant species and their ground cov-
erage (in %) were recorded. Epiphytes, hemi-epiphytes, lichens 
and bryophytes were not sampled. For the statistical modelling of 
the species–area relationships, the open-source software R and 
its packages vegan and SpadeR were used and species data were 
transformed to presence–absence values. Species richness was 
quantified by iChao2 and second-order Jackknife indices. For both 
calculations, the frequencies of unique and duplicated species 
were used to estimate the number of undetected species (Table S3; 
Methods S5).

2.3 | Robust optimization of multiple criteria

Robust optimization of the allocation of land to LULC types pro-
duces solutions that remain feasible for a large range of input values. 
We consider the measured and modelled input values for the indi-
cators (Tables 1‒3) as knowledge available for our decision-makers. 

However, we also model deviations from these expected input val-
ues in the form of worst cases, which are also considered in decision-
making. We assume that more cautious, risk-averse decision-makers 
will account for more pessimistic worst cases in their decisions, 
while for less risk-averse decision-makers worst cases will be more 
optimistic.

Figure 3 illustrates the key concepts of our robust optimization 
approach. It shows examples of the relative distances between the 
indicator levels achieved by a given LULC composition and the ref-
erence point for each indicator (set to 100%), which are the basis 
for our optimization. To determine the level of an indicator achieved 
at the landscape scale by a given LULC composition, we computed 
the sum of the area-weighted indicator values of each of the LULC 
types included in that landscape. We then normalized these land-
scape scale indicators from 0% to 100% based on the highest and 
lowest values for single LULC types to obtain the distance between 
the achieved level and the reference point (Figure 3). Table S6 shows 
the maximal landscape level values, when each single indicator is 
maximized separately.

The nature of a given indicator determined whether the ref-
erence points were represented by the maximum or minimum 
value achieved in the various LULC types. For example, the high-
est NPV among all LULC types was 1,765$/ha for new deforesta-
tion (Table 1): this value forms the 100% level and the minimum 
(lowest NPV, $0/ha for abandoned land) is set to 0%, because 
for this indicator high values are desirable. In contrast, for labour 
requirement and payback periods lower values are desirable and 
their minima thus form the 100% level, while their maxima are 
set to 0%.

The variation of the landscape scale indicator levels shown in 
Figure 3, that is, the varying distances to 100%, is due to the un-
certainty scenarios considered, which reflect the potential vari-
ation in the indicator levels achieved by each LULC type in best 
and worst cases. For example, in the worst-case scenario, the 
current landscape composition would only achieve a performance 
level of ≈1% for social preferences. However, after the optimization 

TA B L E  3   Results of statistical simulations (based on iChao2 and Jackknife2 methods) for biodiversity indicator input values and their 
uncertainties based on species–area relationships

Land-use/land-cover type, l

Indicator, i Unit Abandoned
Alnus 
plantation Pinus plantation

Intense pasture 
recultivation

Low-input 
pasture/new 
deforestation Natural forest

Species richness 
(iChao2)

Number 199.1 (±8.9) 40.6 (±1.8) 468.4 (±76.4) 61.7 (±8.3) 138.7 (±15.7) 1,345.4 (±23.3)

Species richness 
(Jackknife2)

Number 216.2 (±16.4) 45.4 (±6.7) 311.4 (±19.9) 64.2 (±7.3) 137.6 (±12.5) 1,457.4 (±42.0)

Note: These input values and uncertainties are used to simulate decisions in the B-SE scenario, in which biodiversity and SE indicators (Table 1) are 
combined. The dataset is based on a new evaluation of data in Peters et al. (2010) and on additional studies of the authors (Table S3; Methods S5). 
SEM has been used to quantify the possible undesirable deviation from the measured indicator levels for each land-cover type, l, and indicator, i, and 
is given in parentheses. See Figure S6 for graphical representation of species–area relationships. Higher indicator values are considered better.
Abbreviation: SE, socio-economic; SEM, standard error of the mean.
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procedure, this worst-case (guaranteed) performance level increas es 
to ≈40%.

We model the uncertainty of our input values for each LULC 
type based on their SEM. The SEM mainly results from site vari-
ability and to a lesser extent from measurement and sampling 
errors. SEMs computed for economic indicators consider market 
price fluctuations and risk of fire or landslides and are relatively 
high. In contrast, Monte-Carlo simulations for hydrological and 
climate models resulted in lower uncertainties (Knoke et al., 
2014). We assume that the numeric input values represent a 
group of decision-makers and thus reside in predefined inter-
vals for all indicators (Gorissen, Yanıkoğlu, & den Hertog, 2015; 
Jalilvand-Nejad, Shafaei, & Shahriari, 2016). The intervals have 
the size m·SEMli:

These intervals span the best (expected value), yli, and worst 
cases for each uncertainty scenario, u, for the indicator i for a 
certain LULC type, l. We focus on the undesirable deviation of 

the input values by considering possible worst cases, which as-
sumes that our decision-makers are motivated to avoid losses. 
Generating all possible combinations of best (expected) and worst 
cases across the seven LULC types creates our uncertainty sce-
narios, which provide the corner points (i.e. describe the surface) 
of multi-dimensional boxes representing our uncertainty spaces 
Ui for each objective (see Figure S2 for a simplified hypothet-
ical example). All corner points are considered simultaneously 
during the optimization. We may thus expect that the optimal 
land allocation will represent a feasible solution for all input val-
ues included in the uncertainty spaces. We consider these opti-
mized land allocations as compromise solutions, accounting for a 
group of decision-makers with different degrees of risk-aversion. 
Minimizing the maximum distance, β, as described in Figure 3, 
for a group of decision-makers may produce consensus solutions 
when decision-makers are uncertain or disagree in their opinions 
(Zhang et al., 2018).

We demonstrate the feasibility of our solutions by a simulation 
experiment based on sets of input values that were randomly cho-
sen from within the uncertainty spaces. We use 500 hypothetical 
decision-makers per scenario, who consider randomly chosen worst 
cases, which deviate between m = 0 and 3 times the size of the SEM 
of the corresponding input values.

(1)yliu=

⎧
⎪⎪⎨⎪⎪⎩

yli forbest case

yli+m ⋅SEMli forworst case, if less is consideredbetter

yli−m ⋅SEMli forworst case, ifmore is consideredbetter

yliu∈Ui .

F I G U R E  3   Explanation of the optimization procedure for the SE scenario. Triangles depict the possible distances between the reference 
point and actually achieved indicators values, scaled between zero and 100% for each uncertainty scenario (for an uncertainty space of 
size 3 SEM), (a) before and (b) after optimization. Distances for the nine socio-economic indicators are displayed for current and optimized 
long-term landscape compositions. The upper part (a) and (c) describes the current landscape composition, where rehabilitation land-use/
land-cover (LULC) types are not present. The lower part (b) and (d) shows how the maximum distance, β, is minimized by re-allocating land to 
the considered seven LULC types (pie-chart in lower right). Shown indicators are: 1: net present value (NPV; 5% discount rate); 2: NPV (8% 
discount rate); 3: labour requirement; 4: payback period (5% discount rate); 5: payback period (8% discount rate); 6: Saraguro preferences 
without subsidy; 7: Saraguro preferences with subsidy; 8: Mestizo preference without subsidy; 9: Mestizo preference with subsidy. SE, 
socio-economic; SEM, standard error of the mean
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We have implemented our model as a linear program: The objective β 
depends on the future land proportions, af

l
, allocated to each LULC type, l.

s.t.

where af is the future and ac is the current land proportion. The 
maximum input value y∗

iu
 (more is considered as better) or the mini-

mum input value yiu* (less is considered as better) from each uncer-
tainty scenario are the reference points for our decision-makers 
(Inequalities 3). However, it is infeasible to always achieve the ref-
erence points, unless one LULC type provides the most desirable 
values for all indicators and uncertainty scenarios, which is not the 
case in our study. Consequently, our decision-makers must accept 
compromises and thus reduce their maximal requirements. The re-
duction is expressed by �

100
⋅

(
y∗
iu
−yiu∗

)
.  This is the maximal absolute 

distance to the reference points that the decision-makers would tol-
erate (Knoke et al., 2015). β is the maximum relative distance which 
they accept, if Inequality 3 is to be fulfilled for each indicator and 
uncertainty scenario. If decision-makers would accept β = 100, they 
would obtain the least desired input value, while requiring β = 0 
would mean always demanding the reference point; realistic values 
are 0 < β < 100. However, the decision-makers would not reduce 
their requirements for desired indicator levels more than necessary. 
We thus need to minimize the maximum distance β when simulating 
decision-making (Methods S1).

To achieve a minimization of the maximum distance, we can 
reorganize our formulations so that a direct minimization of β is 
possible (Inequalities 4) and obtain a model formulation that al-
lows for exact solutions (Estrella et al., 2014; Tamiz et al., 1998). 
The quotients on the right-hand side of Inequalities 4 quantify 
the individual relative distances between the achieved landscape 
level indicators, 

∑
l yliua

f

l
, and the reference point. We normalize 

these distances between 0% and 100% by dividing the absolute 
distance by the range of input values in one uncertainty scenario 
(Diaz-Balteiro et al., 2018). During sensitivity analyses to study 

the influence of weighting on the results, we included higher 
weights for each single indicator than for all other indicators. To 
achieve this, we multiplied the right-hand side of Inequality 4 by 
wi, considering 

∑
i wi=1 (Table S1). The sum of all allocated area 

proportions must be one and the area proportions also need to be 
non-negative (Equation 5).

Equation (6) represents the initial landscape composition in our 
example. The model runs in 5-year intervals, where the starting 
points of these intervals are updated with the landscape compo-
sition achieved in the previous interval (dynamic approach, see 
Methods S3). To compute annual changes within the 5-year inter-
vals, we consider the optimized future landscape composition as a 
long-term target pursued over a farmer's generation (30 years) and 
divide the associated LULC changes by 30 years. We multiply the 
annual changes by five to determine the (interim) land-use compo-
sition at the end of each 5-year period. The LULC changes result 
from target area proportion (example in Figure 3d) minus current 
area proportion of LULC types (example in Figure 3c). Considering 
the new starting points at the beginning of each 5-year interval 
leads to periodic revisions of the long-term target.

Importantly, the area of new deforestation and future natural 
forest must be equal to the current natural forest area (Equation 7). 
Furthermore, the low-input pasture must not exceed its initial area 
(Equation 8) because new low-input pasture will only be estab-
lished by deforestation, which is then named new deforestation. 
Conversion of new deforestation area into alternative land-use 
options within the next 5 years is ruled out by Equation (7), while 
abandonment of existing low-input pasture or its conversion to 
afforestation or intense pasture is possible. Frontline Analytic 
Solvers'® (V2017-R2 17.5.0.0) standard Linear Programming/
Quadratic Engine was used to solve this program, but it would also 
be possible to run the optimization using open-source software 
(see example Program S1).

This modelling approach allows us to test the impact on de-
forestation decisions when considering (a) only socio-economic 
indicators (SE scenario); (b) ES indicators in combination with 
socio-economic indicators (ES-SE scenario); or (c) biodiversity indica-
tors in combination with socio-economic indicators (B-SE scenario).

3  | RESULTS

3.1 | Static perspective: Robustness of the  
long-term landscape composition

Our robust optimization approach allowed us to find one solution 
for each decision perspective that satisfies all constraints (im-
posed by the Inequalities 3) for all sets of input values included in 
the uncertainty spaces. Figure 4 shows that all minimum perfor-
mance levels for our simulated 500 decision-makers are greater 
than or equal to 100 − β, the performance level guaranteed by our 
robust solutions. As all sets of input values included in the uncer-
tainty spaces were assumed to represent the beliefs of the single 
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decision-makers, these solutions can be assumed satisfactory for 
our groups of decision-makers.

Decision-makers who seek to balance the achievement of socio- 
economic indicators (SE scenario) would aim to reduce the natu-
ral forest share in the landscape from 50% currently to 24.5% in 
30 years. This means an annual deforestation rate of 1.7%. Under 
the SE scenario, decision-makers achieve a guaranteed perfor-
mance level of 100 – β ≈ 39% for all indicators and uncertainty 
scenarios.

Decision-makers accounting for ES indicators in addition to socio- 
economic indicators (ES-SE scenario) would reduce the propor-
tion of natural forest from 50% to 16.6%. This amounts to an an-
nual deforestation rate of 2.2%. Note that this very strong reduction 
of natural forest is partly a result of our static perspective (see the 
text below for changes under a dynamic perspective). The ES-SE 
decision-makers expand the converted land area and diversify the 
landscape more intensely than those in the other scenarios. The 
guaranteed performance level in the ES-SE scenario is 100 – β ≈ 21%.

Decision-makers in the B-SE scenario obtain a similar guar-
anteed performance level (100 − β ≈ 38%) as decision-makers 
in the SE scenario (100 − β ≈ 39%). Accounting for biodiversity 
indicators does not worsen the overall solution much. The B-SE 

scenario retains the most natural forest; its proportion decreases 
from 50% to 34.4%, representing a simulated annual deforesta-
tion rate of 1.0%, the lowest among the three decision-making 
perspectives.

3.2 | Landscape context influences deforestation

We have so far simulated deforestation for the current landscape 
context, with an initial natural forest proportion of 50%. However, the 
specific landscape context influences the simulated level of defor-
estation (Figure 5). For landscapes with an initial natural forest share 
of 38%–80%, the expansion of converted land in the ES-SE scenario 
leads to high deforestation rates. In fact, over this range of natural 
forest cover the ES-SE perspective shows the highest deforestation 
rates among the three decision-making perspectives. At either rela-
tively low or very high shares of natural forest, considering multiple 
ES alongside socio-economic indicators reduces deforestation com-
pared to the baseline SE scenario. At low forest shares, the elevated 
levels of some ES provided by natural forests are so important that 
further reduction of natural forest is greatly reduced or even ruled 
out; accounting for multiple ES would stop deforestation when natural 

F I G U R E  4   Robust allocation of land 
to land-use/land-cover types (a–c) and 
associated minimum performance levels 
(d–f) for hypothetical decision-makers 
represented by 500 sets of input values 
per decision perspective, randomly 
selected from the associated uncertainty 
spaces. The uncertainty spaces have a size 
of 3 SEM, while the simulated deviations 
of the worst cases from the expected 
values for our 500 decision-makers varied 
randomly between zero and 3 SEMs. ES, 
ecosystem services; SE, socio-economic; 
SEM, standard error of the mean
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forest cover falls below 10%. At high forest shares, considering mul-
tiple ES also reduces deforestation levels. At very high forest shares, 
the model has the choice between only two options: retaining natural 
forest or new deforestation (as an interim step to establishing alterna-
tive LULC types). Considering multiple ES favours retaining the natural 
forest, because new deforestation with subsequent low-input pasture 
performs poorly for some of the ES indicators. In this situation, the 
alternative LULC types are not yet available to compensate for this de-
ficiency because they cannot be established immediately, but instead 
require already cleared land.

3.3 | Dynamic perspective: Considering socio-
economic indicators forms an expedient baseline

To account for the influence of a changing natural forest share on 
deforestation rates over time, we periodically updated the initial 
landscape compositions during the optimization procedure. This 
resulted in a dynamic modelling approach, where the starting 
conditions are updated every 5 years (see Section 2.1). Under this 
premise, the SE scenario results in continued deforestation of the 
highly diverse tropical Andean forest, where the proportion of 
the natural forest declines from 50% to only 14% within 55 years 
(Figure 6; Table S7). The favourable NPVs of the deforestation 
activities (represented by the LULC type ‘new deforestation’) 
drive land allocation (see Figures S1 and S3), while the high labour 
requirement for deforestation avoids even larger clearing of the 
natural forest. This scenario shows high agreement with avail-
able data (historical data and stochastic predictions) on LULC 
changes in the studied landscape when using 3 SEMs to derive 
worst-case values. The deforestation resulting from the SE sce-
nario follows both the past trend in LULC change (1975–2015) 
and predictions by an independent, spatially explicit stochastic 
model (Thies et al., 2014; Figure 6 pink shaded area with dotted 
black frame). This trend (see Figure 7 for the development of the 

landscape composition) thus forms a plausible baseline scenario 
for our analyses.

3.4 | Influence of considering multiple ES or 
biodiversity

The ES-SE scenario (see Figure S4 for optimized indicators) re-
duces natural forest cover more than the baseline scenario during 
the first decades (Figure 6). However, the static long-term target 
of natural forest cover under this scenario (reduction of natural 
forest over a farmer generation to 16.6%) has provided a too pes-
simistic scenario. The dynamic model, considering the continuous 
change in the initial landscape composition, suggests a natural for-
est share of 28.9% after 30 years. The higher natural forest pro-
portion obtained by the dynamic model reflects that deforestation 
in the ES-SE scenario depends highly on the landscape context 
(Figure 5), in which deforestation rates decline substantially with 
declining natural forest share.

The nevertheless strong reduction of the natural forest in 
landscapes with 38%–80% initial natural forest cover is associated 
with two interacting trends: (a) an expansion of the converted area 

F I G U R E  5   The influence of the initial natural forest proportion 
(landscape context) on deforestation. The simulated level of the 
annual deforestation rate (%) is higher when aligning multiple 
ecosystem services (ES) with socio-economic (SE) indicators than 
for the other perspectives, when we provide forested landscapes 
with natural forest proportions between 38% and 80%
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lands, afforestation with either Alnus acuminata or Pinus patula, 
recultivation towards intense pasture management, low-input 
pasture, new deforestation and natural forest). Stochastic 
predictions of forest area (in km2, right axis) refer to Thies et al. 
(2014) who provided forecasts for a larger region, which includes 
our study area (our area refers to Curatola Fernández et al., 2015). 
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as a whole and (b) a tendency towards greater LULC diversifica-
tion indicated by increases in the landscape's Shannon diversity 
index (Figure 8b). While the increase in deforestation is largest 
when considering 3 SEMs to estimate worst cases, the Shannon 
index resulting from considering multiple ES and socio-economic 
indicators is not much higher than for the SE scenario. When high 
risk-aversion coincides with the aim of maintaining multiple ES, 
the first trend dominates. In this situation, the simulated LULC 
change predominately enhances the levels of indicators by ex-
panding the area of converted land as a whole (to a greater extent 
than under the baseline scenario), rather than through diversifica-
tion of LULC types.

Our last decision perspective (B-SE scenario) directly accounts 
for biodiversity as an objective in its own right, represented by 
two indicators estimating species richness of vascular plants, in 
addition to the socio-economic indicators (Tables 1 and 3). This 
reduces deforestation rates substantially and immediately (Figures 
5‒8). While the B-SE scenario still considers the socio-economic 
indicators, the compromise planning (see Figure S5 for optimized 
indicators) nevertheless greatly reduces deforestation so that the 
share of natural forest is still 33% after 55 years (Figure 6; Table S9). 

Remarkably, the B-SE scenario also reduces the compositional di-
versity of the landscape to conserve more biodiverse natural forest 
area (Figure 8b).

3.5 | Uncertainty, influential indicators and 
biodiversity levels

Our results highlight that considering larger uncertainty increases 
rather than decreases deforestation rates (Figure 7a–c). While the 
SE scenario hardly responds to greater uncertainties, both the ES-SE 
and the B-SE scenarios respond with increased deforestation rates 
under increased uncertainty.

There are groups of indicators which are particularly influential 
on deforestation rates. We demonstrate this by excluding specific 
indicator groups from the optimization process. For example, exclud-
ing the soil quality (Figure S1a) or NPV indicators (Figure S1b) reduces 
simulated deforestation, in some cases tremendously. Omitting NPVs 
would prevent any deforestation (Figure S1b), whereas omitting labour 
requirement, social preferences and carbon relationships would increase 
deforestation rates. An alternative indicator accounting for the option 

F I G U R E  7   Short-term deforestation rates and development of landscape composition. (a)-(c): Scenarios for annual deforestation rates 
(averages for short-term consideration 2015–2020), when considering increasing uncertainty in decision-making (i.e. increasing degree 
of risk-aversion, indicated by the degree of uncertainty anticipated by decision-makers, as multiples of SEM). (d)-(f):Measured (Curatola 
Fernández et al., 2015), extrapolated (based on measured data) and modelled scenario data on landscape composition. (d) Considering 
socio-economic indicators, (e) considering indicators for multiple ecosystem services and socio-economic indicators, and (f) considering 
biodiversity indicators and socio-economic indicators. We refer to the year 2015 as the start situation, with 50% natural forest, 31% existing 
low-input pastures and 19% already abandoned land. The dashed line indicates a trend, the dots are the deforestation rates associated with 
the land-use scenarios. Seven LULC types (including land-use options for rehabilitation) and an anticipated indicator uncertainty of 3 SEMs 
have been considered for these scenarios.

0

1

2

3

0 1 2 3

(a)
SE scenario considering socio-

economic indicators

0

1

2

3

0 1 2 3

(b) ES-SE scenario considering ecosystem 
service and socio-economic indicators

0

1

2

3

0 1 2 3
Size of expected uncertainty (SEM)

(c) B-SE scenario considering biodiversity 
and socio-economic indicators

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Measured

Extra-
polated

ScenariosExample
for 3 SEM

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

19
75

19
79

19
83

19
87

19
91

19
95

19
99

20
03

20
07

20
11

20
15

20
19

20
23

20
27

20
31

20
35

20
39

20
43

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

Year

Natural forest
New deforesta�on
Low-input pasture
Intense pasture
Pinus planta�on
Alnus planta�on
Abandoned

De
fo

re
st

a�
on

 ra
te

 (%
)

Al
lo

ca
te

d 
pr

op
or

�o
n 

of
 la

nd
 (%

)

Deforesta�on rates averaged over 5 years Development of landscape composi�on

(d)

(e)

(f)



14  |     KNOKE Et al.

of a potential future commercial use of tropical plant species by the 
pharmaceutical industry would reduce deforestation (Methods S6; 
Figure S1c).

Higher weights for single indicators than for all other indicators 
can also alter the results (Table S1). Giving higher weights to either 
NPVs (enhances deforestation) or labour requirement (reduces defor-
estation) underlines the importance of these indicators. The ES-SE 
scenario is less sensitive to the weighting of single indicators than the 
SE scenario. Higher weights would either hardly change the propor-
tion of natural forest in the long-term target landscape composition or 
would reduce it (e.g. when giving high weight to some soil indicators). 
Two out of 23 indicators present an exemption from this tendency: 
Giving higher weight to carbon in planta or to nitrogen mineralization 
significantly increases the future natural forest proportion. However, 
when perceiving all soil quality indicators as a bundle (including nitro-
gen mineralization), giving higher weight to this whole bundle would 
much reduce the future natural forest cover (Table S1).

Species richness for the exotic P. patula plantations was very 
high in contrast to the species richness in plantations with the native 
species A. acuminata (Table 3). However, alternative simulations with 
a reduced species richness in P. patula plantations based on expert 
opinion hardly changed the results (Methods S6; Figure S7).

4  | DISCUSSION

Our study has shown that, in a forested landscape like the one 
studied here, considering multiple ES may result in an initially 
substantial conversion of natural forest, especially if decision-
makers perceive multiple indicators as highly uncertain. More 
than 30 years are needed until considering multiple ES in addition 
to socio-economic indicators leads to the same share of natural 
forest as obtained under the SE scenario. Aiming for multifunc-
tional landscapes may therefore conflict with the aim of reducing 
deforestation.

The shares and characteristics of LULC types may differ for 
other land-use systems, but we can expect similar tendencies in 
other systems. For example, the increase in production levels (by 
expansion of anthropogenic land-covers in our case) under el-
evated uncertainty has been shown for other LULC systems as 
well, based on the example of food production (Fuss et al., 2015). 
This has yet hardly been shown when optimizing for multiple ES. 
In addition, previous studies have found that maintaining multiple 
ES is best supported by heterogeneity, for example through di-
versity in forest species and plant functional traits (Felipe-Lucia 
et al., 2018; Schuldt et al., 2018). This finding applies also for the 
landscapes scale, when various LULC types provide different ES 
to different extents (Plas et al., 2018). Our results are consistent 
with these previous studies. These important dynamics may save 
some natural forests, mainly if their current proportion is already 
low. However, if the forest cover is still substantial, ongoing forest 
loss is more likely.

With our modelling approach, we provide an alternative con-
cept for considering ES and an uncertain future when simulating 
deforestation decisions. Our study integrates and bridges var-
ious perspectives and thus may help fill a current research gap 
(Bennett et al., 2015; Díaz et al., 2018). We do not focus our mod-
elling of land-use decisions on monetary values (Bateman et al., 
2013), but instead we use multiple criteria quantified by indica-
tors from diverse sources of knowledge, which also include eco-
nomic and social aspects. We thus refer to the fact that people 
perceive and value the benefits of ecosystems in multiple ways 
(Pascual et al., 2017). While we highlight the importance of the 
given landscape context and social preferences, our results chal-
lenge the pervasive expectation that aiming for a multitude of ES 
(Ingram, Redford, & Watson, 2012) and considering uncertainty 
(Cabral, Halpern, Costello, & Gaines, 2017) will always support 
conservation. We found this only to be the case under specific 
conditions, that is, in landscapes with either very high or very low 
forest shares.

F I G U R E  8   Changes in deforestation rates and Shannon's 
diversity. Difference in initial annual deforestation rates over 
the first 5-year period (2015–2020) and change in Shannon's 
landscape diversity indices achieved after 5 years. (a) Changes 
in deforestation from land-use decisions simulated for either the 
ES-SE scenario (considering ES and socio-economic indicators) or 
the B-SE scenario (considering biodiversity and socio-economic 
indicators) are compared with simulated decisions under the SE 
scenario considering only socio-economic indicators.  
(b) Differences after 5 years in the Shannon landscape diversity 
index; landscape compositions resulting from either the ES-SE 
scenario or B-SE scenario are compared with those arising from the 
SE scenario. ES, ecosystem services; SE, socio-economic
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When interpreting our results, it is important to keep in mind that 
our assessment builds on a common ‘more is better’ or ‘less is better’ 
ranking and on the assumption of risk-aversion. Considering a large 
variety of indicators, even if the demand for specific ES is unclear 
from today's perspective, may be justified, because forward-look-
ing land-use planning may also include indicators for potentially 
useful ES. Since specific LULC types such as afforestation require 
longer time periods (e.g. 20 years to maturity), it is meaningful to 
start building up these forest resources already, even if the current 
demand for some of their ES is not so strong.

As the future demand for ES is uncertain, we have considered all 
indicators and uncertainty scenarios as equally important, following 
Walker, Lempert, and Kwakkel (2013). Sensitivity analyses for the 
ES-SE scenario have shown for most single indicators that the future 
natural forest proportion would hardly change or would even reduce, 
when we provide these single indicators with enhanced weights. 
Only when either carbon sequestration or nitrogen mineralization are 
single objectives with high weight, we obtain a long-term target land-
scape composition that contains more natural forest area than under 
the SE scenario. However, when multiple ES are equally important in 
a multifunctional landscape or when all indicators for soil quality are 
important as a bundle, the maintenance of ES and the conservation of 
natural forests will remain to be potentially conflicting aims.

Our results support the conclusion by Meyer et al. (2018) that 
biodiversity conservation is sometimes unlikely to be achieved indi-
rectly by managing ecosystems for various particular ES (see Allan 
et al., 2015, for similar conclusions). We have shown trade-offs be-
tween considering a variety of ES and the conservation of mega- 
diverse natural forests at the landscape level. We suggest care in 
using ES concepts independent from the landscape context to sup-
port the conservation of biodiversity indirectly. While the concept 
of ES is essential to maintain and enhance human well-being (e.g. 
Bennett et al., 2015), we see conservation-related applications of 
this concept mainly in human modified landscapes with low natural 
forest shares, where landscape-level diversification will also support 
biodiversity. However, in regions still comprising larger areas of high 
conservation value, where biodiversity in the natural ecosystem is 
considerably higher than in the corresponding anthropogenic re-
placement systems, concentrating on multiple ES alone might be in-
sufficient to slow or prevent deforestation. Our approach may help 
to identify types of landscapes where a conflict between the goal 
of multifunctional landscapes and reducing deforestation may arise 
and to better align respective policies.
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