Cite as:
Houska, T.; Kraft, P.; Chamorro-Chavez, A. &amp; Breuer, L. (2015): <b>SPOTting Model Parameters Using a Ready-Made Python Package</b>. <i>PLOS One</i> <b>10</b>(12), 1-22<br>DOI: <a href="" target="_blank"></a>.

Resource Description

Title: SPOTting Model Parameters Using a Ready-Made Python Package
F2Fdw ID: 77
Publication Date: 2015-12-17
License and Usage Rights: FACE2FACE data user agreement.
Resource Owner(s):
Individual: Houska, Tobias
Individual: Kraft, Philipp
Individual: Chamorro-Chavez, Alejandro
Individual: Breuer, Lutz
The choice for specific parameter estimation methods is often more dependent on ist availability than ist Performance. We developed SPOTPY (Statistical Parameter Optimization Tool), an open source Python package parameters for a wide range of ecological models. SPOTPY currently contains eight widely used algoritms, 11 objective functions, and can sample from eight parameter distributions. SPOTPY has a model-Independent structure and can be run in parallel from the workstation to large computation clusters using the Message Passing Interface (MPI). We tested SPOTPY in five different case studies to parameterize the Rosenbrock, Griewank and Ackley functions, a one-dimensional physically based soil moisture routine, where we searched for the parameters of the van Genuchten-Mualem function and a calibration of a biogeochemistry model with different objective functions. The case studies reveal that the implemented SPOTPY methods can be used for any model with just a minimal amount of code for maximal power of parameter optimization. They further show the benefit of having one package at hand that includes number of well performing parameter search methods, since not every case study can be solved sufficiently with every algorithm or every objective function.
| uncertainty analysis |
Literature type specific fields:
Journal: PLOS One
Volume: 10
Issue: 12
Page Range: 1-22
Metadata Provider:
Individual: Liebermann, Ralf
Online Distribution:
Download File:

Quick search

  • Publications:
  • Datasets: