Publikationen
Es wurden 3 Publikationen gefunden
Moser, G.; Gorenflo, A.; Brenzinger, K.; Keidel, L.; Braker, G.; Marhan, S.; Clough, T.J. & Müller, C. (2018): Explaining the doubling of N2O emissions under elevated CO2 in the Giessen FACE via in-field 15N tracing. Global Change Biology early view, 1-14
DOI: http://dx.doi.org/10.1111/gcb.14136 | Revised: 12 January 2018.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1111/gcb.14136 | Revised: 12 January 2018
-
Abstract:
Abstract:
Rising atmospheric CO2 concentrations are expected to increase nitrous oxide (N2O) emissions from soils via changes in microbial nitrogen (N) transformations triggering a positive feedback reaction that could accelerate climate change. Several studies have shown N2O emission increases under elevated atmospheric CO2 (eCO2), but the underlying processes are not yet fully understood. Here we present results showing changes in soil N transformation dynamics from the Giessen Free Air CO2 Enrichment (GiFACE): a permanent grassland that has been exposed to eCO2, +20% relative to ambient concentrations (aCO2), for 15 years. We applied in the field an ammonium-nitrate fertilizer solution, in which either ammonium (NH4+) or nitrate (NO3-) was labelled with 15N. The simultaneous gross N transformation rates were analysed with a 15N tracing model and a solver method. The results confirmed that after 15 years of eCO2 the N2O emissions under eCO2 were still more than 2-fold higher than under aCO2. The tracing model results indicated that plant uptake of NH4+ did not differ between treatments, but uptake of NO3- was significantly reduced under eCO2. However, the ratio of gross production and consumption of NH4+ remained unchanged under eCO2, but decreased slightly for NO3-, which increased NO3- availability under eCO2. The N2O isotopic signature indicated that under eCO2 the sources of the additional emissions, 8407 µg N2O-N m-2 during the first 58 days after labelling, were associated with NO3- reduction (+2.0%), NH4+ oxidation (+11.1%) and organic N oxidation (+86.9%). We presume that increased root exudation under eCO2 provided an additional source of bioavailable supply of energy that triggered the stimulation of microbial soil organic matter (SOM) mineralization, as a priming effect, and an increased activity of bacterial nitrite reductase, which caused the shift in N2O:N2 emission ratio, via incomplete denitrification, explaining the positive feedback reaction of doubled N2O emissions.
-
Keywords: |
climate change |
elevated CO2 |
grassland |
Giessen-FACE |
Giessen FACE |
Gi-FACE |
Gross N transformation |
free air carbon dioxide enrichment |
long-term response |
N transformation |
N2O emission |
positive climate change feedback |
Chen, Z.; Zhang, J.; Xiong, Z.; Pan, G. & Müller, C. (2015): Enhanced gross nitrogen transformation rates and nitrogen supply in paddy field under elevated atmospheric carbon dioxide and temperature. Soil Biology & Biochemistry 94, 80-87
DOI: http://dx.doi.org/10.1016/j.soilbio.2015.11.025.
-
log in to download
-
link
-
view metadata
-
DOI: 10.1016/j.soilbio.2015.11.025
-
Abstract:
Abstract:
Climate change, particularly the combined effects of elevated CO2 and temperature, is likely to alter the internal nitrogen (N) cycle of agricultural ecosystems. However, little is known about such phenomena in paddy soils, which are expected to expand in the near future due to population increase. A 15N tracer study, with soil taken from field manipulation treatments, showed that elevated CO2, either alone or combined with elevated temperature, stimulated the mineralization of labile organic N 37-fold but decreased the mineralization of recalcitrant organic N. In contrast, elevated temperature alone accelerated the mineralization of recalcitrant organic N approximately 2-fold but had no effect on the mineralization of labile organic N. Ammonium immobilization increased under elevated CO2 and elevated temperature. Gross and net NO3 production decreased under elevated CO2 and the combined treatments, whereas elevated temperature caused an increase in both rates. Dissimilatory reduction of NO3 to NH4þ increased under elevated CO2 but decreased with elevated temperature. Our findings suggest that progressive N limitation can be alleviated by increasing gross N transformation rates under each climate change treatment and that counteraction will dominate the interactive responses of CO2 and temperature. Because we expect a concomitant increase in both CO2 and temperature, we only expect minor effects of these particular factors arising as a result of climate on soil N dynamics in paddy soils.
-
Keywords: |
Elevated carbon dioxide |
Gross N transformation |
N15 tracer model |
Rice field |
Global warming |